Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 409: 124918, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33422751

ABSTRACT

Continuing our previous research work on a drug delivery system based on combined AC/DC magnetic fields, we have developed a prototype AC/DC magnetic syringe device for stimulation of drug release from drug carriers, with the options of injecting/removing drug carriers. The porous Fe3O4 carrier, in a dose-dependent manner, causes acute oxidative damage and reduces the viability of differentiated SH-SY5Y human neuroblastoma cells, indicating the necessity for its removal once it reaches the therapeutic concentration at the target tissue. The working mechanism of the device consists of three simple steps. First, direct injection of the drug adsorbed on the surface of a carrier via a needle inserted into the targeted area. The second step is stimulation of drug release using a combination of AC magnetic field (a coil magnetised needle with AC current) and permanent magnets (DC magnetic lens outside of the body), and the third step is removal of the drug carriers from the injected area after the completion of drug release by magnetising the tip of the needle with DC current. Removing the drug carriers allows us to avoid possible acute and long term side effects of the drug carriers in the patient's body, as well as any potential response of the body to the drug carriers.


Subject(s)
Drug Carriers , Magnets , Drug Liberation , Humans , Magnetic Fields , Magnetics
2.
Nanoscale ; 9(36): 13829, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28895969

ABSTRACT

Correction for 'Gold-loaded nanoporous iron oxide nanocubes: a novel dispersible capture agent for tumor-associated autoantibody analysis in serum' by Sharda Yadav et al., Nanoscale, 2017, 9, 8805-8814.

3.
Biosens Bioelectron ; 92: 668-678, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-27836605

ABSTRACT

DNA methylation is an epigenetic modification of DNA, where a methyl group is added at the fifth carbon of the cytosine base to form 5 methyl cytosine (5mC) without altering the DNA sequences. It plays important roles in regulating many cellular processes by modulating key genes expression. Alteration in DNA methylation patterns becomes particularly important in the aetiology of different diseases including cancers. Abnormal methylation pattern could contribute to the pathogenesis of cancer either by silencing key tumor suppressor genes or by activating oncogenes. Thus, DNA methylation biosensing can help in the better understanding of cancer prognosis and diagnosis and aid the development of therapies. Over the last few decades, a plethora of optical detection techniques have been developed for analyzing DNA methylation using fluorescence, Raman spectroscopy, surface plasmon resonance (SPR), electrochemiluminescence and colorimetric readouts. This paper aims to comprehensively review the optical strategies for DNA methylation detection. We also present an overview of the remaining challenges of optical strategies that still need to be focused along with the lesson learnt while working with these techniques.


Subject(s)
Biosensing Techniques/methods , DNA Methylation , Animals , Biosensing Techniques/instrumentation , Colorimetry/instrumentation , Colorimetry/methods , DNA/analysis , DNA/genetics , Humans , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Models, Molecular , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Surface Plasmon Resonance/instrumentation , Surface Plasmon Resonance/methods
4.
Article in English | MEDLINE | ID: mdl-27690076

ABSTRACT

Mobile phone subscriptions continue to increase across the world, with the electromagnetic fields (EMF) emitted by these devices, as well as by related technologies such as Wi-Fi and smart meters, now ubiquitous. This increase in use and consequent exposure to mobile communication (MC)-related EMF has led to concern about possible health effects that could arise from this exposure. Although much research has been conducted since the introduction of these technologies, uncertainty about the impact on health remains. The Australian Centre for Electromagnetic Bioeffects Research (ACEBR) is a National Health and Medical Research Council Centre of Research Excellence that is undertaking research addressing the most important aspects of the MC-EMF health debate, with a strong focus on mechanisms, neurodegenerative diseases, cancer, and exposure dosimetry. This research takes as its starting point the current scientific status quo, but also addresses the adequacy of the evidence for the status quo. Risk communication research complements the above, and aims to ensure that whatever is found, it is communicated effectively and appropriately. This paper provides a summary of this ACEBR research (both completed and ongoing), and discusses the rationale for conducting it in light of the prevailing science.

5.
Chem Asian J ; 9(11): 3238-44, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25213201

ABSTRACT

A recent study on nanoporous carbon based materials (J. Am. Chem. Soc. 2012, 134, 2864) showed that the presence of abundant graphitized sp(2) carbon species in the frameworks led to higher affinity for aromatic hydrocarbons than their aliphatic analogues. Herein, improved understanding of the sensitive and selective detection of aromatic substances by using mesoporous carbon (MPC)-based materials, combined with a quartz crystal microbalance (QCM) sensor system, was obtained. MPCs were synthesized by direct carbonization of mesoporous polymers prepared from resol through a soft templating approach with Pluronic F127. The carbon-based frameworks can be graphitized through the addition of a cobalt source to the precursor solution, according to the catalytic activity of the cobalt nanoparticles formed during the carbonization process. From the Raman data, the degree of the graphitization was clearly increased by increasing the cobalt content and elevating the carbonization temperature. From a QCM study, it was proved that the highly graphitized MPCs exhibited a higher affinity for aromatic hydrocarbons than their aliphatic analogues. By increasing the degree of graphitization in the carbon-based pore walls, the MPCs showed both larger adsorption uptake and faster sensor response towards toxic benzene and toluene vapors.

SELECTION OF CITATIONS
SEARCH DETAIL
...