Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 253: 112888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471422

ABSTRACT

AIM: To acquire a thorough comprehension of the photoactivated Cur-doped ZnONPs at different concentrations 0%, 2.5%, and 5% on the physical qualities, antibacterial efficacy, degree of conversion, and µshear bond strength between orthodontic brackets and the enamel surface. MATERIAL AND METHODS: An extensive investigation was carried out utilizing a range of analytical methods, scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, micro tensile bond strength (µTBS) testing, and evaluation of antibacterial effectiveness. Cur-doped ZnONPs at concentrations of 2.5% and 5% were blended with Transbond XT, a light-curable orthodontic adhesive. A control group without the addition of Cur-doped ZnONPs was also prepared. The tooth samples were categorized into three groups based on the weight percentage of NPs: Group 1 (control) with 0% Cur-doped ZnONPs, Group 2 with 2.5 wt% Cur-doped ZnONPs, and Group 3 with 5 wt% Cur-doped ZnONPs. The SEM technique was employed to analyze the morphological characteristics of Cur-doped ZnONPs and ZnONPs. The composition and elemental distribution of the modified Cur-doped ZnONPs were assessed using energy-dispersive X-ray spectroscopy. The effectiveness of NPs at various concentrations against S.Mutans was gauged through the pour plate method. DC of Cur-doped ZnONPs at a region of 1608 cm-1 to 1636 cm-1 for the cured area, whereas the uncured area spanned the same range of 1608 cm-1 to 1636 cm-1 was assessed. The Adhesive Remnant Index (ARI) approach was utilized to investigate the bond failure of orthodontic brackets, while a Universal Testing Machine (UTM) was utilized to test µTBS. The Kruskal-Wallis test was employed to investigate variations in S.mutans survival rates. To determine the µTBS values, analysis of variance (ANOVA) and the post hoc Tukey multiple comparisons test were used. RESULTS: The maximum µTBS was given and documented in group 3: 5 wt% Cur-doped ZnONPs (21.21 ± 1.53 MPa). The lowest µTBS was given in group 2: 2.5 wt% Cur-doped ZnONPs (19.58 ± 1.27 MPa). The highest efficacy against S.mutans was documented in group 3 in which 5 wt% Cur-doped ZnONPs (0.39 ± 0.15). The lowest efficacy was seen in group 1 in which no Cur-doped ZnONPs were used (6.47 ± 1.23). The ARI analysis indicated that the predominant failure was between scores 0 and 1 among all experimental groups. Control group 1 which was not modified showed the highest DC (73.11 ± 4.19). CONCLUSION: Orthodontic adhesive, containing 5% Cur-doped ZnONPs photoactivated with visible light exhibited a favorable impact on µTBS and indicated enhanced antibacterial efficacy against S.mutans. Nevertheless, it was observed that the addition of Cur-doped ZnONPs at different concentrations (2.5%,5%) resulted in a decrease in the monomer-to-polymer ratio compromising DC.


Subject(s)
Curcumin , Nanoparticles , Zinc Oxide , Adhesiveness , Surface Properties , Staphylococcus aureus , Microscopy, Electron, Scanning , X-Rays , Anti-Bacterial Agents/pharmacology , Light , Spectrum Analysis , Materials Testing
2.
Microsc Res Tech ; 87(6): 1146-1156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38278778

ABSTRACT

Zirconium dioxide silver-doped nanoparticles (ZrO2AgDNPs) impacts the adhesive material in terms of its physical characteristics, antimicrobial properties, degree of conversion (DC), and micro-tensile bond strength (µTBS) of orthodontic brackets to the enamel surface. A comprehensive methodological analysis utilizing a range of analytical techniques, including scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, DC analysis, and µTBS testing. A light-curable orthodontic adhesive, specifically Transbond XT, was combined with ZrO2AgDNPs at 2.5% and 5%. As a control, an adhesive with no incorporation of ZrO2AgDNPs was also prepared. The tooth samples were divided into three groups based on the weightage of NPs: group 1: 0% ZrO2AgDNPs (control), group 2: 2.5 wt% ZrO2AgDNPs, and group 3: 5 wt% ZrO2AgDNPs. EDX graph demonstrated silver (Ag), Zirconium (Zr), and Oxygen (O2), The antibacterial efficacy of adhesives with different concentrations of NPs (0%, 2.5%, and 5%) was assessed using the pour plate method. The FTIR spectra were analyzed to identify peaks at 1607 cm-1 corresponding to aromatic CC bonds and the peaks at 1638 cm-1 indicating the presence of aliphatic CC bonds. The µTBS was assessed using universal testing machine (UTM) and bond failure of orthodontic brackets was seen using adhesive remanent index (ARI) analysis. Kruskal-Wallis test assessed the disparities in survival rates of Streptococcus mutans. Analysis of variance (ANOVA) and post hoc Tukey multiple comparisons test calculated µTBS values. The lowest µTBS was observed in group 1 adhesive loaded with 0% ZrO2AgDNPs (21.25 ± 1.22 MPa). Whereas, the highest µTBS was found in group 3 (26.19 ± 1.07 MPa) adhesive loaded with 5% ZrO2AgDNPs. ZrO2AgDNPs in orthodontic adhesive improved µTBS and has acceptable antibacterial activity against S mutans. ZrO2AgDNPs at 5% by weight can be used in orthodontic adhesive alternative to the conventional method of orthodontic adhesive for bracket bonding. RESEARCH HIGHLIGHTS: The highest µTBS was found in orthodontic adhesive loaded with 5% ZrO2AgDNPs. ARI analysis indicates that the majority of the failures fell between 0 and 1 among all investigated groups. The colony-forming unit count of S. mutans was significantly less in orthodontic adhesive loaded with nanoparticles compared with control. The 0% ZrO2AgDNPs adhesive showed the highest DC.


Subject(s)
Dental Bonding , Nanoparticles , Orthodontic Brackets , Surface Properties , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Shear Strength , Resin Cements/chemistry , Anti-Bacterial Agents/chemistry , Orthodontic Brackets/microbiology , Materials Testing
3.
Bioinformation ; 17(4): 492-499, 2021.
Article in English | MEDLINE | ID: mdl-34602776

ABSTRACT

It is of interest to compare the bonding characteristics of the two nano filled adhesives, Grandio (Voco, Cuxhaven, Germany) and Transbond Supreme LV (TSLV, 3M Unitek, Monrovia, California) with conventional bonding adhesive Transbond XT (TBXT, 3M Unitek) for bonding of molar tubes. 45 extracted human permanent molar teeth, divided into three groups of 15 each, were bonded with stainless steel molar tubes (3M Unitek, USA) using TBXT in Group 1, Grandio in Group 2, TSLV in Group 3. Remnant Index and shear bond strength was evaluated after 24 hrs. of storage with the aid of Instron Universal testing machine and Stereomicroscope respectively. Data were analysed using Analysis of Variance (ANOVA) test, Post-hoc Bonferroni test and Kruskal Wallis test. The mean SBS of Group 1(TBXT) was 13.86±3.27 MPa, Group 2 (Grandio) was 9.48±2.36 MPa and Group 3 (TSLV) was 11.64±2.71 MPa. Both nano-filled adhesives had SBS well above the clinically acceptable range. Assessment of ARI scores and type of bond failure revealed that adhesive failure for TBXT and TSLV and cohesive failure for Grandio. Nano-filled adhesives can be an appropriate substitute for the conventional adhesive for bonding of molar tubes.

4.
Am J Orthod Dentofacial Orthop ; 153(5): 632-644, 2018 May.
Article in English | MEDLINE | ID: mdl-29706211

ABSTRACT

INTRODUCTION: Orthodontic tooth movement results from increased inflammation and osteoclast activation. Since patients of all ages now routinely seek orthodontics treatment, we investigated whether age-dependent biologic responses to orthodontic force correlate with the rate of tooth movement. METHODS: We studied 18 healthy subjects, adolescents (11-14 years) and adults (21-45 years), with Class II Division 1 malocclusion requiring 4 first premolar extractions. Canines were retracted with a constant force of 50 cN. Gingival crevicular fluid was collected before orthodontic treatment and at days 1, 7, 14, and 28 after the canine retraction. Cytokine (IL-1ß, CCL2, TNF-α) and osteoclast markers (RANKL and MMP-9) were measured using antibody-based protein assays. Pain and discomfort were monitored with a numeric rating scale. The canine retraction rate was measured from study models taken at days 28 and 56. RESULTS: Although the cytokine and osteoclast markers increased significantly in both age groups at days 1, 7, and 14, the increases were greater in adults than in adolescents. Interestingly, the rate of tooth movement in adults was significantly slower than in adolescents over the 56-day study period. Adults also reported significantly more discomfort and pain. CONCLUSIONS: Age is a significant variable contributing to the biologic response to orthodontic tooth movement. Adults exhibited a significantly higher level of cytokine and osteoclasts activity but, counterintuitively, had a significantly slower rate of tooth movement.


Subject(s)
Tooth Movement Techniques , Adolescent , Adult , Age Factors , Biomarkers/blood , Child , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...