Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 248: 108115, 2024 May.
Article in English | MEDLINE | ID: mdl-38503072

ABSTRACT

BACKGROUND AND OBJECTIVE: As large sets of annotated MRI data are needed for training and validating deep learning based medical image analysis algorithms, the lack of sufficient annotated data is a critical problem. A possible solution is the generation of artificial data by means of physics-based simulations. Existing brain simulation data is limited in terms of anatomical models, tissue classes, fixed tissue characteristics, MR sequences and overall realism. METHODS: We propose a realistic simulation framework by incorporating patient-specific phantoms and Bloch equations-based analytical solutions for fast and accurate MRI simulations. A large number of labels are derived from open-source high-resolution T1w MRI data using a fully automated brain classification tool. The brain labels are taken as ground truth (GT) on which MR images are simulated using our framework. Moreover, we demonstrate that the T1w MR images generated from our framework along with GT annotations can be utilized directly to train a 3D brain segmentation network. To evaluate our model further on larger set of real multi-source MRI data without GT, we compared our model to existing brain segmentation tools, FSL-FAST and SynthSeg. RESULTS: Our framework generates 3D brain MRI for variable anatomy, sequence, contrast, SNR and resolution. The brain segmentation network for WM/GM/CSF trained only on T1w simulated data shows promising results on real MRI data from MRBrainS18 challenge dataset with a Dice scores of 0.818/0.832/0.828. On OASIS data, our model exhibits a close performance to FSL, both qualitatively and quantitatively with a Dice scores of 0.901/0.939/0.937. CONCLUSIONS: Our proposed simulation framework is the initial step towards achieving truly physics-based MRI image generation, providing flexibility to generate large sets of variable MRI data for desired anatomy, sequence, contrast, SNR, and resolution. Furthermore, the generated images can effectively train 3D brain segmentation networks, mitigating the reliance on real 3D annotated data.


Subject(s)
Deep Learning , Humans , Brain/diagnostic imaging , Brain/anatomy & histology , Magnetic Resonance Imaging/methods , Algorithms , Neuroimaging/methods , Image Processing, Computer-Assisted/methods
2.
Comput Biol Med ; 161: 106973, 2023 07.
Article in English | MEDLINE | ID: mdl-37209615

ABSTRACT

Cardiac magnetic resonance (CMR) image segmentation is an integral step in the analysis of cardiac function and diagnosis of heart related diseases. While recent deep learning-based approaches in automatic segmentation have shown great promise to alleviate the need for manual segmentation, most of these are not applicable to realistic clinical scenarios. This is largely due to training on mainly homogeneous datasets, without variation in acquisition, which typically occurs in multi-vendor and multi-site settings, as well as pathological data. Such approaches frequently exhibit a degradation in prediction performance, particularly on outlier cases commonly associated with difficult pathologies, artifacts and extensive changes in tissue shape and appearance. In this work, we present a model aimed at segmenting all three cardiac structures in a multi-center, multi-disease and multi-view scenario. We propose a pipeline, addressing different challenges with segmentation of such heterogeneous data, consisting of heart region detection, augmentation through image synthesis and a late-fusion segmentation approach. Extensive experiments and analysis demonstrate the ability of the proposed approach to tackle the presence of outlier cases during both training and testing, allowing for better adaptation to unseen and difficult examples. Overall, we show that the effective reduction of segmentation failures on outlier cases has a positive impact on not only the average segmentation performance, but also on the estimation of clinical parameters, leading to a better consistency in derived metrics.


Subject(s)
Algorithms , Heart Diseases , Humans , Magnetic Resonance Imaging/methods , Heart/diagnostic imaging , Radiography , Image Processing, Computer-Assisted/methods
3.
IEEE J Biomed Health Inform ; 27(7): 3302-3313, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37067963

ABSTRACT

In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.


Subject(s)
Deep Learning , Heart Ventricles , Humans , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging/methods , Algorithms , Heart Atria
4.
Med Image Anal ; 84: 102688, 2023 02.
Article in English | MEDLINE | ID: mdl-36493702

ABSTRACT

Deep learning-based segmentation methods provide an effective and automated way for assessing the structure and function of the heart in cardiac magnetic resonance (CMR) images. However, despite their state-of-the-art performance on images acquired from the same source (same scanner or scanner vendor) as images used during training, their performance degrades significantly on images coming from different domains. A straightforward approach to tackle this issue consists of acquiring large quantities of multi-site and multi-vendor data, which is practically infeasible. Generative adversarial networks (GANs) for image synthesis present a promising solution for tackling data limitations in medical imaging and addressing the generalization capability of segmentation models. In this work, we explore the usability of synthesized short-axis CMR images generated using a segmentation-informed conditional GAN, to improve the robustness of heart cavity segmentation models in a variety of different settings. The GAN is trained on paired real images and corresponding segmentation maps belonging to both the heart and the surrounding tissue, reinforcing the synthesis of semantically-consistent and realistic images. First, we evaluate the segmentation performance of a model trained solely with synthetic data and show that it only slightly underperforms compared to the baseline trained with real data. By further combining real with synthetic data during training, we observe a substantial improvement in segmentation performance (up to 4% and 40% in terms of Dice score and Hausdorff distance) across multiple data-sets collected from various sites and scanner. This is additionally demonstrated across state-of-the-art 2D and 3D segmentation networks, whereby the obtained results demonstrate the potential of the proposed method in tackling the presence of the domain shift in medical data. Finally, we thoroughly analyze the quality of synthetic data and its ability to replace real MR images during training, as well as provide an insight into important aspects of utilizing synthetic images for segmentation.


Subject(s)
Deep Learning , Humans , Magnetic Resonance Imaging , Heart/diagnostic imaging , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods
5.
Comput Med Imaging Graph ; 101: 102123, 2022 10.
Article in English | MEDLINE | ID: mdl-36174308

ABSTRACT

Synthesis of a large set of high-quality medical images with variability in anatomical representation and image appearance has the potential to provide solutions for tackling the scarcity of properly annotated data in medical image analysis research. In this paper, we propose a novel framework consisting of image segmentation and synthesis based on mask-conditional GANs for generating high-fidelity and diverse Cardiac Magnetic Resonance (CMR) images. The framework consists of two modules: i) a segmentation module trained using a physics-based simulated database of CMR images to provide multi-tissue labels on real CMR images, and ii) a synthesis module trained using pairs of real CMR images and corresponding multi-tissue labels, to translate input segmentation masks to realistic-looking cardiac images. The anatomy of synthesized images is based on labels, whereas the appearance is learned from the training images. We investigate the effects of the number of tissue labels, quantity of training data, and multi-vendor data on the quality of the synthesized images. Furthermore, we evaluate the effectiveness and usability of the synthetic data for a downstream task of training a deep-learning model for cardiac cavity segmentation in the scenarios of data replacement and augmentation. The results of the replacement study indicate that segmentation models trained with only synthetic data can achieve comparable performance to the baseline model trained with real data, indicating that the synthetic data captures the essential characteristics of its real counterpart. Furthermore, we demonstrate that augmenting real with synthetic data during training can significantly improve both the Dice score (maximum increase of 4%) and Hausdorff Distance (maximum reduction of 40%) for cavity segmentation, suggesting a good potential to aid in tackling medical data scarcity.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Databases, Factual , Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...