Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 107(6): 1178-1185, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33242396

ABSTRACT

We have previously described a heart-, eye-, and brain-malformation syndrome caused by homozygous loss-of-function variants in SMG9, which encodes a critical component of the nonsense-mediated decay (NMD) machinery. Here, we describe four consanguineous families with four different likely deleterious homozygous variants in SMG8, encoding a binding partner of SMG9. The observed phenotype greatly resembles that linked to SMG9 and comprises severe global developmental delay, microcephaly, facial dysmorphism, and variable congenital heart and eye malformations. RNA-seq analysis revealed a general increase in mRNA expression levels with significant overrepresentation of core NMD substrates. We also identified increased phosphorylation of UPF1, a key SMG1-dependent step in NMD, which most likely represents the loss of SMG8--mediated inhibition of SMG1 kinase activity. Our data show that SMG8 and SMG9 deficiency results in overlapping developmental disorders that most likely converge mechanistically on impaired NMD.


Subject(s)
Developmental Disabilities/genetics , Intracellular Signaling Peptides and Proteins/genetics , Nonsense Mediated mRNA Decay , Adolescent , Brain/abnormalities , Child , Child, Preschool , Consanguinity , Developmental Disabilities/metabolism , Family Health , Female , Gene Deletion , Genetic Linkage , Heart Defects, Congenital/genetics , Homozygote , Humans , Infant , Male , Pedigree , Phenotype , Phosphorylation , RNA Helicases/metabolism , RNA, Messenger/metabolism , RNA-Seq , Trans-Activators/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...