Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 948063, 2023.
Article in English | MEDLINE | ID: mdl-36845430

ABSTRACT

Introduction: Obesity presents a significant public health problem. Brain plays a central role in etiology and maintenance of obesity. Prior neuroimaging studies have found that individuals with obesity exhibit altered neural responses to images of food within the brain reward system and related brain networks. However, little is known about the dynamics of these neural responses or their relationship to later weight change. In particular, it is unknown if in obesity, the altered reward response to food images emerges early and automatically, or later, in the controlled stage of processing. It also remains unclear if the pretreatment reward system reactivity to food images is predictive of subsequent weight loss intervention outcome. Methods: In this study, we presented high-calorie and low-calorie food, and nonfood images to individuals with obesity, who were then prescribed lifestyle changes, and matched normal-weight controls, and examined neural reactivity using magnetoencephalography (MEG). We performed whole-brain analysis to explore and characterize large-scale dynamics of brain systems affected in obesity, and tested two specific hypotheses: (1) in obese individuals, the altered reward system reactivity to food images occurs early and automatically, and (2) pretreatment reward system reactivity predicts the outcome of lifestyle weight loss intervention, with reduced activity associated with successful weight loss. Results: We identified a distributed set of brain regions and their precise temporal dynamics that showed altered response patterns in obesity. Specifically, we found reduced neural reactivity to food images in brain networks of reward and cognitive control, and elevated reactivity in regions of attentional control and visual processing. The hypoactivity in reward system emerged early, in the automatic stage of processing (< 150 ms post-stimulus). Reduced reward and attention responsivity, and elevated neural cognitive control were predictive of weight loss after six months in treatment. Discussion: In summary, we have identified, for the first time with high temporal resolution, the large-scale dynamics of brain reactivity to food images in obese versus normal-weight individuals, and have confirmed both our hypotheses. These findings have important implications for our understanding of neurocognition and eating behavior in obesity, and can facilitate development of novel integrated treatment strategies, including tailored cognitive-behavioral and pharmacological therapies.

2.
Brain Pathol ; 25(5): 565-74, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25311358

ABSTRACT

White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). γH2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated ß-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined.


Subject(s)
Aging/metabolism , Aging/pathology , Brain/metabolism , Brain/pathology , Oxidative Stress , White Matter/metabolism , White Matter/pathology , Aged , Aged, 80 and over , Aging/genetics , DNA Damage , Female , Gene Expression , Humans , Male , Neuroglia/metabolism , Neuroglia/pathology
3.
Neuropathol Appl Neurobiol ; 40(7): 802-14, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24861546

ABSTRACT

AIMS: Abnormalities of the brain microvasculature in Alzheimer's disease have led to the vascular hypothesis of the disease, which predicts that vascular changes precede neuronal dysfunction and degeneration. To determine the spectrum of endothelial injury in the elderly and its relation to Alzheimer-type neuropathology we investigated DNA damage in a population-based sample derived from the Medical Research Council Cognitive Function and Ageing Study. METHODS: We examined endothelial damage in frontal and temporal cortex (n = 97) using immunohistochemistry for γH2AX and DNA-protein kinase (DNA-PKcs). To determine the effects of endothelial DNA damage at the earliest stages of Alzheimer's pathology we further focused our analysis on cases classified as Braak 0-II and examined endothelial senescence using histochemistry for ß-galactosidase and the expression of genes related to DNA damage and senescence using quantitative polymerase chain reaction (qPCR). RESULTS: We demonstrated large variation in endothelial DNA damage which was not associated with Alzheimer's neuropathology. Endothelial DNA-PKcs correlated with neuronal and glial DNA-PKcs counts. Focusing our further analysis on Braak 0-II cases, qPCR analysis demonstrated a trend to increased TP53 (P = 0.064) in cases with high compared with low endothelial DNA damage which was supported by immunohistochemical analysis of p53. Endothelial ß-galactosidase expression was associated with increased neuronal (P = 0.033) and glial (P = 0.038), but not endothelial DNA-PKcs expression. CONCLUSIONS: Damage to brain endothelial cells occurs early in relation to, or independently of, Alzheimer pathology, and parallels that in neurones and glia. Endothelial DNA damage and senescence are a brain ageing process that may contribute to dysfunction of the neurovascular unit in some elderly individuals.


Subject(s)
Alzheimer Disease/genetics , Cellular Senescence/genetics , Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , DNA Damage , Endothelial Cells/metabolism , Aged , Aged, 80 and over , Disease Progression , Frontal Lobe/blood supply , Frontal Lobe/metabolism , Humans , Microvessels/metabolism , Temporal Lobe/metabolism
4.
Ann Neurol ; 73(2): 246-58, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23281025

ABSTRACT

OBJECTIVE: To determine, when, how, and which neurons initiate the onset of pathophysiology in amyotrophic lateral sclerosis (ALS) using a transgenic mutant sod1 zebrafish model and identify neuroprotective drugs. METHODS: Proteinopathies such as ALS involve mutant proteins that misfold and activate the heat shock stress response (HSR). The HSR is indicative of neuronal stress, and we used a fluorescent hsp70-DsRed reporter in our transgenic zebrafish to track neuronal stress and to measure functional changes in neurons and muscle over the course of the disease. RESULTS: We show that mutant sod1 fish first exhibited the HSR in glycinergic interneurons at 24 hours postfertilization (hpf). By 96 hpf, we observed a significant reduction in spontaneous glycinergic currents induced in spinal motor neurons. The loss of inhibition was followed by increased stress in the motor neurons of symptomatic adults and concurrent morphological changes at the neuromuscular junction (NMJ) indicative of denervation. Riluzole, the only approved ALS drug and apomorphine, an NRF2 activator, reduced the observed early neuronal stress response. INTERPRETATION: The earliest event in the pathophysiology of ALS in the mutant sod1 zebrafish model involves neuronal stress in inhibitory interneurons, resulting from mutant Sod1 expression. This is followed by a reduction in inhibitory input to motor neurons. The loss of inhibitory input may contribute to the later development of neuronal stress in motor neurons and concurrent inability to maintain the NMJ. Riluzole, the approved drug for use in ALS, modulates neuronal stress in interneurons, indicating a novel mechanism of riluzole action.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Disease Models, Animal , Interneurons/physiology , Superoxide Dismutase/genetics , Zebrafish , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Apomorphine/pharmacology , Dopamine Agonists/pharmacology , Genes, Reporter , Glycine/physiology , HSP72 Heat-Shock Proteins/genetics , Humans , Interneurons/drug effects , Interneurons/pathology , Mice , Motor Neurons/drug effects , Motor Neurons/pathology , Motor Neurons/physiology , Muscle, Skeletal/innervation , NF-E2-Related Factor 2/metabolism , Neuromuscular Junction/pathology , Neuromuscular Junction/physiopathology , Neuroprotective Agents , Patch-Clamp Techniques , Riluzole/pharmacology , Stress, Physiological/drug effects , Stress, Physiological/physiology , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...