Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24166, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293394

ABSTRACT

This study develops a thermal homogenization model for an aluminum honeycomb panel using the representative volume element (RVE) concept, considering the orthotropic nature of the structure. The RVE thermal homogenization method is a numerical approach for analyzing heterogeneous materials. It employs a constitutive model based on RVE performance to represent thermal behavior. Effective parameters are determined through averaging techniques, and the finite element method solves the thermal problem, accounting for structure topology and material behavior. The resulting heat conduction problem is solved using the finite element method (FEM) to evaluate the effective thermal characteristics. A 3D RVE is generated based on the honeycomb panel's geometry, evaluating thermal conductivity tensor and describing the medium's thermal performance. Numerical tests validate the model by comparing it with the real honeycomb structure under sinusoidal heat flux. Results show good correlation, with maximum temperatures of 1101.9 °C in the real structure and 1096.4 °C in the medium. The homogeneous medium is further used to investigate thermal performance under convective conditions with varying panel thicknesses, achieving over 77 °C temperature reduction with the thickest panel. Natural vibration behavior is considered, demonstrating strong correlation between modal responses and natural frequencies. This modeling approach efficiently analyzes thermal behavior in large honeycomb structures, reducing computational time significantly.

2.
Sensors (Basel) ; 19(10)2019 May 17.
Article in English | MEDLINE | ID: mdl-31108868

ABSTRACT

Optical sensors have shown high capabilities to improve the detection and monitoring of plant disease development. This study was designed to compare the feasibility of different sensors to characterize Fusarium head blight (FHB) caused by Fusarium graminearum and Fusarium culmorum. Under controlled conditions, time-series measurements were performed with infrared thermography (IRT), chlorophyll fluorescence imaging (CFI), and hyperspectral imaging (HSI) starting 3 days after inoculation (dai). IRT allowed the visualization of temperature differences within the infected spikelets beginning 5 dai. At the same time, a disorder of the photosynthetic activity was confirmed by CFI via maximal fluorescence yields of spikelets (Fm) 5 dai. Pigment-specific simple ratio PSSRa and PSSRb derived from HSI allowed discrimination between Fusarium-infected and non-inoculated spikelets 3 dai. This effect on assimilation started earlier and was more pronounced with F. graminearum. Except the maximum temperature difference (MTD), all parameters derived from different sensors were significantly correlated with each other and with disease severity (DS). A support vector machine (SVM) classification of parameters derived from IRT, CFI, or HSI allowed the differentiation between non-inoculated and infected spikelets 3 dai with an accuracy of 78, 56 and 78%, respectively. Combining the IRT-HSI or CFI-HSI parameters improved the accuracy to 89% 30 dai.

SELECTION OF CITATIONS
SEARCH DETAIL
...