Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Anat Histol Embryol ; 49(5): 656-678, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32639627

ABSTRACT

The cardiovascular system is the first functional organ in the embryo, and its blood vessels form a widespread conductive network within the organism. Blood vessels develop de novo, by the differentiation of endothelial progenitor cells (vasculogenesis) or by angiogenesis, which is the formation of new blood vessels from existing ones. This review presents an overview of the current knowledge on physiological and pathological angiogenesis in the horse including studies on equine endothelial cells. Principal study fields in equine angiogenesis research were identified: equine endothelial progenitor cells; equine endothelial cells and angiogenesis (heterogeneity, markers and assessment); endothelial regulatory molecules in equine angiogenesis; angiogenesis research in equine reproduction (ovary, uterus, placenta and conceptus, testis); angiogenesis research in pathological conditions (tumours, ocular pathologies, equine wound healing, musculoskeletal system and laminitis). The review also includes a table that summarizes in vitro studies on equine endothelial cells, either describing the isolation procedure or using previously isolated endothelial cells. A particular challenge of the review was that results published are fragmentary and sometimes even contradictory, raising more questions than they answer. In conclusion, angiogenesis is a major factor in several diseases frequently occurring in horses, but relatively few studies focus on angiogenesis in the horse. The challenge for the future is therefore to continue exploring new therapeutic angiogenesis strategies for horses to fill in the missing pieces of the puzzle.


Subject(s)
Cardiovascular System/embryology , Cardiovascular System/growth & development , Endothelial Progenitor Cells/physiology , Horse Diseases/pathology , Horses/embryology , Horses/growth & development , Animals , Eye Diseases/pathology , Eye Diseases/veterinary , Female , Hoof and Claw/blood supply , Hoof and Claw/pathology , Male , Musculoskeletal System/anatomy & histology , Musculoskeletal System/blood supply , Neoplasms/blood supply , Neoplasms/veterinary , Ovary/blood supply , Ovary/physiology , Placenta/physiology , Pregnancy , Reproduction , Testis/blood supply , Uterus/blood supply , Uterus/physiology , Wound Healing/physiology
2.
PLoS One ; 15(3): e0230070, 2020.
Article in English | MEDLINE | ID: mdl-32160230

ABSTRACT

Continuous loading of the skeleton by the body's weight is an important factor in establishing and maintaining bone morphology, architecture and strength. However, in fast-growing chickens the appendicular skeleton growth is suboptimal making these chickens predisposed to skeletal mineralization disorders and fractures. This study compared the macro- and microstructure as well as the mechanical properties of the tibiotarsus of a novel dual-purpose, Lohmann Dual (LD) and a highly developed broiler, Ross (Ross 308) chicken line. Eighty one-day-old male chicks of each line were grown until their body weight (BW) reached 2000g. Starting at the day of hatching, six birds of each line were sampled weekly. The weight, length and width of the tibiotarsus were measured and its mechanical properties (rigidity, M-Max and the M-fracture) were evaluated using the three-point bending test. Additionally, the mineral density of both, trabecular and cortical bone, the bone volume fraction, the trabecular number, thickness and separation plus cortical thickness of both chicken lines were analyzed using microcomputed tomography. The growth of the tibiotarsus in both chicken lines followed a similar pattern. At the same age, the lighter LD chickens had shorter, thinner and lighter tibiotarsi than those of Ross chickens. However, the LD chickens had a similar cortical thickness, bone volume fraction and similar mineral density of both trabecular and cortical bone to that of Ross chickens. Furthermore, the tibiotarsus of LD chickens was longer, heavier and wider than those of Ross chickens of the same BW. In addition the rigidity of the LD tibiotarsus was greater than that of Ross chickens. This suggests that the tibiotarsus of LD chickens had more bending resistance than those of Ross chickens of the same BW. Consequently, fattening LD chickens to the marketable weight should not affect their leg skeleton stability.


Subject(s)
Bones of Lower Extremity/physiology , Chickens/growth & development , Aging , Animals , Bone Density , Bones of Lower Extremity/anatomy & histology , Bones of Lower Extremity/diagnostic imaging , Male , Stress, Mechanical , X-Ray Microtomography
3.
PLoS One ; 14(12): e0226903, 2019.
Article in English | MEDLINE | ID: mdl-31881051

ABSTRACT

Rearing dual-purpose chickens is a practicable approach to avoid culling one-day-old male layer chicks. The present study examined the impact of a conventional fattening diet on the liver of a novel dual-purpose chicken line (Lohmann Dual, LD) in comparison to a broiler (Ross 308) chicken line. Age-related changes of structure and lipid content of the liver were assessed. One hundred twenty and newly hatched chicks (LD = 66, Ross = 54) were kept under the same husbandry conditions and fed a commercial diet for 5 weeks for Ross and 9 weeks for LD. Six birds of each line were examined weekly. Their body weight (BW) and liver mass were recorded. Microscopic structure and ultrastructure of the liver were investigated and the liver lipid content was measured using a pre-validated method. During the study period, liver mass increased with age, while normalized liver mass decreased. Furthermore, liver mass of Ross birds was greater than that of LD birds of the same BW. Overall, no significant differences were observed in the hepatic structure or ultrastructure between the two chicken lines. The hepatic lymphatic aggregations were without fibrous capsules and their number and area increased throughout the first week, then the values began to fluctuate with age in both chicken lines. The changes in the liver lipid content of the two chicken lines were within the normal physiological range over the term of the study. The liver lipid content correlated negatively with age and body weight in both lines. It was the highest on the first day then decreased until day 7 and thereafter did not change in both chicken lines. However, given the same body weight, the Ross chickens had a 9% greater liver lipid content than LD chickens. It is concluded that there is no apparent adverse effect of a high-energy diet on the liver of LD chickens.


Subject(s)
Chickens/growth & development , Diet/veterinary , Fats/analysis , Lipids/analysis , Liver/growth & development , Animal Feed/analysis , Animal Husbandry , Animals , Body Weight , Liver/chemistry , Liver/ultrastructure , Male
4.
PLoS One ; 14(3): e0214158, 2019.
Article in English | MEDLINE | ID: mdl-30897149

ABSTRACT

The use of dual-purpose chickens is a strategy to avoid killing one-day-old male chicks of egg laying lines. Lohmann Dual (LD) is a novel dual-purpose chicken line created by the crossbreeding of layer and broiler lines. However, many of the cardiovascular diseases of broilers are likely to be associated with intensive genetic selection for growth and feed conversion efficiency. This study aimed to compare the macroscopic and microscopic structure of the heart and the aorta of the LD chicken line with that of the broiler chicken line, Ross 308 (Ross) under typical husbandry conditions for meat production. Eighty, one-day-old male chicks of each line were housed for 5 weeks (Ross) and 9 weeks (LD). Six birds of each line were sampled weekly. Heart mass, thickness of ventricular walls, cardiomyocyte size and blood capillary density as well as aortic diameter and thickness, number of elastic lamellae and elastic fiber percentage in the aortic wall were determined. The growth patterns of the heart were the same in the two lines. Although LD chickens had a lower absolute heart mass than that of Ross chickens, the relative heart mass in both lines was similar. The cardiomyocytes of LD chickens were larger than those of Ross's of the same body weight (BW), nevertheless both lines had similar thicknesses of their ventricular walls. The blood capillary density was greater in the LD heart than in that of the Ross heart. The aorta of LD chickens had proportionally; a greater aortic lumen radius, larger numbers of elastic lamellae and more elastic fibers than in Ross chickens. Our results suggest that the heart and aorta of the LD chickens have not been disadvantaged by their intensive genetic selection; furthermore, LD chickens have a better myocardial capillary supply and better aortic mechanical properties than those of Ross chickens.


Subject(s)
Aorta/ultrastructure , Chickens/anatomy & histology , Heart Ventricles/ultrastructure , Microvessels/ultrastructure , Animal Husbandry , Animals , Body Weight , Elasticity , Male , Selection, Genetic
5.
PLoS One ; 13(10): e0204921, 2018.
Article in English | MEDLINE | ID: mdl-30339691

ABSTRACT

The transition to using dual-purpose chickens is an alternative to killing male hatchlings of high performance egg-laying chickens. This study aimed to compare the gastrointestinal tract of a recently developed genetic line of dual purpose male chicken, Lohmann Dual (LD), with that of a broiler line, Ross 308. Eighty birds from each line were grown until they reached an average body weight 2000 g (5 weeks for Ross and 9 for LD birds). Six birds of each line were sampled weekly. Body weight (BW), normalized mass of gastrointestinal segments and relative length of intestine were determined. Histologically the villus height, epithelium height, crypt depth, mucosal enlargement factor and the tunica muscularis thickness were measured in jejunum and ileum. Data were regressed against body weight and genetic line. Jejunal enterocyte microvilli and junctional complexes length were measured. Normalized mass and relative length of the gastrointestinal segments were greater in LD birds than in Ross birds at all ages. After day 7 these decreased steadily over the lifetime of the birds in both genetic lines. The growth curves of the gastrointestinal segments of the LD birds were similar to those of the Ross birds. In birds of the same BW, LD birds had a significantly heavier gizzard, shorter intestine, higher jejunal villi, thicker ileal tunica muscularis and smaller ileal mucosal enlargement factor than were found in Ross birds. The large gizzard in LD chickens presumably increases the degree of food processing and enhances availability of nutrients in the orad part of the intestine leading to a lower nutrient concentration and a smaller absorption surface area in the ileum of the LD compared to the Ross chickens. The anatomical differences between the two lines are important criteria for further selection and should be considered in their feeding management.


Subject(s)
Chickens/growth & development , Gastrointestinal Tract/anatomy & histology , Selective Breeding/genetics , Animal Feed , Animals , Body Weight , Chickens/anatomy & histology , Chickens/genetics , Gastrointestinal Tract/growth & development , Intestines/anatomy & histology , Intestines/growth & development , Male , Qualitative Research , Regression Analysis
6.
PLoS One ; 12(1): e0170858, 2017.
Article in English | MEDLINE | ID: mdl-28118415

ABSTRACT

In this study the macroscopic and microscopic structure of the heart of a fast growing, meat-type turkey line (British United turkeys BUT Big 6) and a wild-type turkey line (Canadian Wild turkey) were compared. At 8 and 16 weeks of age, 10 birds of each genotype and sex were sampled. The body mass and heart mass of the meat-type turkey both increased at a faster rate than those of the wild-type turkey. However in both turkey lines, the relative heart mass decreased slightly with age, the decrease was statistically significant only in the male turkeys. Furthermore meat-type turkeys had a significantly (p < 0.01) lower relative heart mass and relative thickness of the left ventricle compared to the wild-type turkeys of the same age. The wild-type turkeys showed no significant change in the size of cardiomyocytes (cross sectional area and diameter) from 8 weeks to 16 weeks. In contrast, the size of cardiomyocytes increased significantly (p < 0.001) with age in the meat-type turkeys. The number of capillaries in the left ventricular wall increased significantly (p < 0.001) in wild-type turkeys from 2351 per mm2 at the age of 8 weeks to 2843 per mm2 at 16 weeks. However, in the meat-type turkeys there were no significant changes, capillary numbers being 2989 per mm2 at age 8 weeks and 2915 per mm2 at age 16 weeks. Correspondingly the area occupied by capillaries in the myocardium increased in wild-type turkeys from 8.59% at the age of 8 weeks to 9.15% at 16 weeks, whereas in meat-type turkeys this area decreased from 10.4% at 8 weeks to 9.95% at 16 weeks. Our results indicate a mismatch in development between body mass and heart mass and a compromised cardiac capillary density and architecture in the meat-type turkeys in comparison to the wild-type turkeys.


Subject(s)
Coronary Vessels/anatomy & histology , Heart/anatomy & histology , Turkeys/anatomy & histology , Animal Husbandry , Animals , Animals, Domestic , Animals, Wild , Body Weight , Breeding , Capillaries/anatomy & histology , Cell Count , Coronary Circulation , Coronary Vessels/growth & development , Female , Genotype , Heart/growth & development , Male , Meat , Microcirculation , Myocytes, Cardiac/cytology , Organ Size , Sex Characteristics , Species Specificity , Turkeys/genetics , Turkeys/growth & development
7.
Poult Sci ; 95(4): 901-11, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26908884

ABSTRACT

In this study the macroscopic and microscopic structure of the liver of a fast growing, meat-type turkey line (British United turkeys BUT Big 6, n=25) and a wild-type turkey line (Wild Canadian turkey, n=48) were compared at the age of 4, 8, 12, 16, and 20 wk. Because the growth plates of long bones were still detectable in the 20-week-old wild-type turkeys, indicating immaturity, a group of 8 wild-type turkeys at the age of 24 wk was included in the original scope of the study. Over the term of the study, the body and liver weights of birds from the meat-type turkey line increased at a faster rate than those of the wild-type turkey line. However, the relative liver weight of the meat-type turkeys declined (from 2.7 to 0.9%) to a greater extent than that of the wild-type turkeys (from 2.8 to 1.9%), suggesting a mismatch in development between muscle weights and liver weights of the meat-type turkeys. Signs of high levels of fat storage in the liver were detected in both lines but were greater in the wild-type turkey line, suggesting a better feed conversion by the extreme-genotype birds i.e., meat-type birds. For the first time, this study presents morphologic data on the structure and arrangement of the lymphatic tissue within the healthy turkey liver, describing two different types of lymphatic aggregations within the liver parenchyma, i.e., aggregations with and without fibrous capsules. Despite differences during development, both adult meat-type and adult wild-type turkeys had similar numbers of lymphatic aggregations.


Subject(s)
Liver/anatomy & histology , Liver/metabolism , Turkeys/anatomy & histology , Turkeys/physiology , Age Factors , Animal Husbandry , Animals , Female , Liver/growth & development , Male , Organ Size , Selection, Genetic , Turkeys/genetics , Turkeys/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL