Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-27060413

ABSTRACT

Using first principle methodologies, we characterize the lowest electronic states of 2-quinolinone(+) cation. The ground state of this ion is of X˜(2)A(″) nature. We deduce the adiabatic ionization energy of 2-quinolinone to be equal 8.249eV using the explicitly correlated coupled cluster level and where zero point vibrational energy, core-valence and scalar relativistic effects are taken into account. We examine also the ionization induced structural changes and vibrational shifts and analyze the electron density differences between the neutral and ionic species. These data show that the formation of 2-quinolinone(+)X˜(2)A(″) from 2-quinolinone affects strongly the HNCO group, whereas the carbon skeletal is perturbed when the upper electronic cationic states are populated. The comparison to 2-pyridone allows the elucidation of the effect of benzene ring fused with this heterocyclic ring. Since quinolones and pyridones are both model systems of DNA bases, these findings might help in understanding the charge redistribution in these biological entities upon ionization.


Subject(s)
Quinolones/chemistry , DNA/chemistry , Electrons , Ions/chemistry , Models, Molecular , Pyridones/chemistry , Thermodynamics
2.
J Phys Chem A ; 120(10): 1669-76, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26911361

ABSTRACT

Small methane clusters (CH4)n are irradiated using intense femtosecond laser excitation at 624 nm. The ionized species and those resulting from their fragmentation are detected via time-of-flight mass spectrometry (TOF MS). We find evidence of bound, multiply charged methane molecules and clusters resulting from Coulomb explosion upon exposure to highly energetic, ultrafast radiation. The assignment of the mass spectra is done after first-principles calculations (at the (R)MP2/aug-cc-pVXZ (X = D,T) level) on the charged (CH4)n(q+) clusters (n = 1-4, q = 1-4). We also considered the cluster stabilities and fragments that may result from intracluster molecular reactivity. Complex intracluster ion-molecule reactions induced by photoionization are expected to occur. Interestingly, we show that multi charged small methane clusters undergo intracluster reactions and fragmentations which are different from those observed for isolated methane ions or for large ionized methane clusters.

3.
J Chem Phys ; 141(4): 044308, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-25084911

ABSTRACT

Through the study of the C3(X1Σg (+)) (1)Σg (+)) + He((1)S) astrophysical relevant system using standard (CCSD(T)) and explicitly correlated (CCSD(T)-F12) coupled cluster approaches, we show that the CCSD(T)-F12/aug-cc-pVTZ level represents a good compromise between accuracy and low computational cost for the generation of multi-dimensional potential energy surfaces (PESs) over both intra- and inter-monomer degrees of freedom. Indeed, the CCSD(T)-F12/aug-cc-pVTZ 2D-PES for linear C3 and the CCSD(T)-F12/aug-cc-pVTZ 4D-PES for bent C3 configurations gently approach those mapped at the CCSD(T)/aug-cc-pVXZ (X = T,Q) + bond functions level, whereas a strong reduction of computational effort is observed. After exact dynamical computations, the pattern of the rovibrational levels of the intermediate C3-He complex and the rotational and rovibrational (de-) excitation of C3 by He derived using both sets of PESs agree quite well. Since C3 shows a floppy character, the interaction PES is defined in four dimensions to obtain realistic collisional parameters. The C-C-C bending mode, which fundamental lies at 63 cm(-1) and can be excited at very low temperatures is explicitly considered as independent coordinate. Our work suggests hence that CCSD(T)-F12/aug-cc-pVTZ methodology is the key method for the generation of accurate polyatomic - He/H2 multi-dimensional PESs.

4.
J Chem Phys ; 141(1): 014302, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-25005284

ABSTRACT

Using ab initio methodology, we studied the IO(q+) (q = 2, 3, 4) multi-charged ions. Benchmark computations on the IO(X(2)Π) neutral species allow validate the current procedure. For IO(2+), several potential wells were found on the ground and the electronic excited states potentials with potential barriers with respect to dissociation, where this dication can exist in the gas phase as long-lived metastable molecules. We confirm hence the recent observation of the dication by mass spectrometry. Moreover, we predict the existence of the metastable IO(3+) trication, where a shallow potential well along the IO internuclear distance is computed. This potential well supports more than 10 vibrational levels. The IO(3+) excited states are repulsive in nature, as well as the computed potentials for the IO(4+) tetracation. For the bound states, we give a set of spectroscopic parameters including excitation transition energies, equilibrium distances, harmonic and anharmonic vibrational terms, and rotational constants. At the MRCI + Q/aug-cc-pV5Z(-PP) level, the adiabatic double and triple ionization energies of IO are computed to be ~28.1 eV and ~55.0 eV, respectively.

5.
J Chem Phys ; 140(24): 244309, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24985640

ABSTRACT

We performed accurate ab initio investigations of the geometric parameters and the vibrational structure of neutral HNS/HSN triatomics and their singly charged anions and cations. We used standard and explicitly correlated coupled cluster approaches in connection with large basis sets. At the highest levels of description, we show that results nicely approach those obtained at the complete basis set limit. Moreover, we generated the three-dimensional potential energy surfaces (3D PESs) for these molecular entities at the coupled cluster level with singles and doubles and a perturbative treatment of triple excitations, along with a basis set of augmented quintuple-zeta quality (aug-cc-pV5Z). A full set of spectroscopic constants are deduced from these potentials by applying perturbation theory. In addition, these 3D PESs are incorporated into variational treatment of the nuclear motions. The pattern of the lowest vibrational levels and corresponding wavefunctions, up to around 4000 cm(-1) above the corresponding potential energy minimum, is presented for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL
...