Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0305431, 2024.
Article in English | MEDLINE | ID: mdl-38865304

ABSTRACT

BACKGROUND: The incidence of antimicrobial resistance is alarmingly high because it occurs in humans, environment, and animal sectors from a "One Health" viewpoint. The emergence of plasmid-carried mobile colistin-resistance (MCR) genes limits the efficacy of colistin, which is the last-line treatment for multidrug resistance (MDR) against gram-negative infections. OBJECTIVES: The current study aimed to investigate emergence of colistin-resistance (MCR 1-5) genes in E. coli isolated from patients with urinary tract infections (UTIs) in Jordan. METHODS: E. coli (n = 132) were collected from urine specimens. The E. coli isolated from human UTI patients were examined the resistance to colistin based on the presence of MCR (1-5). All isolates were tested against 20 antimicrobials using the standard disk diffusion method. The broth microdilution technique was used to analyze colistin resistance. In addition, the MCR (1-5) genes were detected using multiplex PCR. RESULTS: Out of the 132 isolates, 1 isolate was colistin-resistant, having a minimum inhibitory concentration of 8 µg/mL and possessing MCR-1. All the E. coli isolates showed high resistance to penicillin (100%), amoxicillin (79.55%), cephalexin (75.76%), nalidixic acid (62.88%), tetracycline (58.33%), or cefepime (53.79). CONCLUSION: To our knowledge, this is the first report on the presence of plasmid-coded MCR-1 in E. coli from a patient with UTIs in Jordan. This is a problematic finding because colistin is the last-line drug for the treatment of infections caused by MDR gram-negative bacteria. There is a crucial need to robustly utilize antibiotics to control and prevent the emergence and prevalence of colistin-resistance genes.


Subject(s)
Anti-Bacterial Agents , Colistin , Escherichia coli Infections , Escherichia coli , Microbial Sensitivity Tests , Urinary Tract Infections , Humans , Colistin/pharmacology , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Female , Male , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Adult , Middle Aged , Escherichia coli Proteins/genetics , Drug Resistance, Bacterial/genetics , Aged , Jordan , Adolescent , Young Adult , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Child
2.
Med Chem ; 13(1): 77-84, 2016.
Article in English | MEDLINE | ID: mdl-26916500

ABSTRACT

BACKGROUND: The field of coordination chemistry has registered a phenomenal growth during the last few decades. It is well known that precious metals have been used for medicinal purposes for at least 3500 years. At that time, precious metals were believed to benefit health because of their rarity, but research has now well established the link between medicinal properties of inorganic drugs and specific biological properties. METHODS: The current study was designed to explain the synthesis and characterization of the lanthanide (III) nitrate complexes with N-(2-hydroxynaphthalen-1-yl) methylene) nicotinohydrazide schiff base and to evaluate the antibacterial and the antioxidant activities of the schiff base and it's lanthanide ion complexes. Antimicrobial activity of the Lanthanide (III) nitrate complexes with N-(2- hydroxynaphthalen-1-yl) methylene) nicotinohydrazide schiff base was estimated by minimum inhibitory concentration (MIC, µg/mL) using a micro-broth dilution method for different clinical isolates such as Eschereshia coli and Enterococcus faecalis. The antioxidant activities of the ligand and its lanthanide complexes were tested using a UV-Visible spectrophotometer by preparing 5x10-4M of all tested samples and DPPH in Dimethyl sulphoxide (DMSO). RESULTS: Our present study has shown that moderate antimicrobial activity exists against both ligand and its complexes. There was no significant difference between Gram-positive and Gram-negative bacteria towards the tested ligand and its complexes. The free ligand has scavenging activity between 13-21 % while all complexes are more efficient in quenching DPPH than free ligand. CONCLUSION: The results obtained herein indicate that the ligand and its complexes have a considerable antibacterial activity as well as antioxidant activity in quenching DPPH.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Coordination Complexes/pharmacology , Lanthanoid Series Elements/pharmacology , Niacinamide/analogs & derivatives , Nitrates/pharmacology , Schiff Bases/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Bacteria/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Lanthanoid Series Elements/chemistry , Microbial Sensitivity Tests , Molecular Structure , Niacinamide/chemical synthesis , Niacinamide/chemistry , Niacinamide/pharmacology , Nitrates/chemistry , Schiff Bases/chemical synthesis , Schiff Bases/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...