Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 10(9): 230392, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37771965

ABSTRACT

The ecological state of the Persian or Arabian Gulf (hereafter 'Gulf') is in sharp decline. Calls for comprehensive ecosystem-based management approaches and transboundary conservation have gone largely unanswered, despite mounting marine threats made worse by climate change. The region's long-standing political tensions add additional complexity, especially now as some Gulf countries will soon adopt ambitious goals to protect their marine environments as part of new global environmental commitments. The recent interest in global commitments comes at a time when diplomatic relations among all Gulf countries are improving. There is a window of opportunity for Gulf countries to meet global marine biodiversity conservation commitments, but only if scientists engage in peer-to-peer diplomacy to build trust, share knowledge and strategize marine conservation options across boundaries. The Gulf region needs more ocean diplomacy and coordination; just as critically, it needs actors at its science-policy interface to find better ways of adapting cooperative models to fit its unique marine environment, political context and culture. We propose a practical agenda for scientist-led diplomacy in the short term and lines of research from which to draw (e.g. co-production, knowledge exchange) to better design future science diplomacy practices and processes suited to the Gulf's setting.

2.
Sci Total Environ ; 748: 141226, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32818899

ABSTRACT

Hurricane Harvey (Harvey), a slow-moving storm, struck the Texas coast as a category 4 hurricane. Over the course of 53 days, the floodwaters of Harvey delivered 14 × 109 m3 of freshwater to Galveston Bay. This resulted in record flooding of Houston bayous and waterways, all of which drained into the San Jacinto Estuary (SJE,) with its main tributaries being Buffalo Bayou and the San Jacinto River. The lower SJE and lower Buffalo Bayou has experienced up to 3 m of land subsidence in the past 100 years and, as a result, prior to Hurricane Harvey, up to 2 m of sediment within the upper seabed contained an archive of high concentrations of Total Hg (HgT) and other particle-bound and porewater contaminants. Within the SJE, Harvey eroded at least 48 cm of the sediment column, resulting in the transport of an estimated 16.4 × 106 tons of sediment and at least 2 tons of Hg into Galveston Bay. This eroded sediment was replaced by a Harvey storm deposit of 7.73 × 106 tons of sediment and 0.96 tons within the SJE, mostly sourced from Buffalo Bayou. Considering that the frequency of slow-moving tropical cyclones capable of delivering devastating rainfall may be increasing, then one can expect that delivery of Hg and other contaminants from the archived sediment within urbanized estuaries will increase and that what happened during Harvey is a harbinger of what is to come.

3.
Environ Pollut ; 237: 887-899, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29361321

ABSTRACT

During the 20th century the impacts of industrialization and urbanization in Galveston Bay resulted in significant shifts in trace metals (Hg, Pb, Ni, Zn) and vascular plant biomarkers (lignin phenols) recorded within the surface sediments and sediment cores profile. A total of 22 sediment cores were collected in Galveston Bay in order to reconstruct the historical input of Hg, Pb, Ni, Zn and terrestrial organic matter. Total Hg (T-Hg) concentration ranged between 6 and 162 ng g-1 in surface sediments, and showed decreasing concentrations southward from the Houston Ship Channel (HSC) toward the open estuary. Core profiles of T-Hg and trace metals (Ni, Zn) showed substantial inputs starting in 1905, with peak concentrations between 1960 and 1970's, and decreasing thereafter with exception to Pb, which peaked around 1930-1940s. Stable carbon isotopes and lignin phenols showed an increasing input of terrestrial organic matter driven by urban development within the watershed in the early 1940s. Both the enrichment factor and the geoaccumulation index (Igeo) for T-Hg as a measure of the effectiveness of environmental management practices showed substantial improvements since the 1970s. The natural recovery rate in Galveston Bay since the peak input of T-Hg was non-linear and displayed a slow recovery during the twenty-first century.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Bays/chemistry , Estuaries , Geologic Sediments/chemistry , Lead , Lignin/chemistry , Mercury , Texas , Trace Elements/analysis , Urbanization , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...