Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 14348, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35999244

ABSTRACT

The relatively high cost of all-vanadium redox flow batteries (VRFBs) limits their widespread deployment. Enhancing the kinetics of the electrochemical reactions is needed to increase the power density and energy efficiency of the VRFB, and hence decrease the kWh cost of VRFBs. In this work, hydrothermally synthesized hydrated tungsten oxide (HWO) nanoparticles, C76, and C76/HWO were deposited on carbon cloth electrodes and tested as electrocatalysts for the VO2+/VO2+ redox reactions. Field Emission Scanning Electron Microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscope (HR-TEM,), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and contact angle measurements were used to characterize the electrodes' material. The addition of the C76 fullerene to HWO was found to boost the electrode kinetics towards the VO2+/VO2+ redox reaction, by enhancing the conductivity and providing oxygenated functional groups at its surface. A composite of HWO/C76 (50 wt% C76) was found to be the optimum for the VO2+/VO2+ reaction, showing a ΔEp of 176 mV, compared to 365 mV in the case of untreated carbon cloth (UCC). Besides, HWO/C76 composites showed a significant inhibition effect for the parasitic chlorine evolution reaction due to the W-OH functional groups.

2.
Nanoscale Adv ; 3(19): 5626-5635, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-36133261

ABSTRACT

Polystyrene nanospheres are of great importance in 3D hard templating along with many other fields like pharmaceuticals and coatings. Therefore, it is important to be able to prepare polystyrene beads with different sphere sizes that suit each application. In this work, the emulsion polymerization method was used to prepare monodispersed polystyrene (PS) spheres with an average size of 50 nm, using styrene monomer, sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) as surfactants, and potassium persulfate (KPS) as the initiator. The average size and size distribution of the PS spheres were controlled by optimizing the synthesis parameters such as the concentration of the monomer, initiator, and surfactant, the type of surfactant, and the time and temperature of polymerization. The shape, size, and size distribution of the prepared PS spheres were characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). The preparation of perfectly spherical PS spheres as small as 50 nm with a narrow size distribution is obtained using 8% styrene with (5% SDS and 2% KPS of the styrene amount) at 90 °C, with the monomer and surfactant molar ratio and concentration and the polymerization temperature being the dominating factors that affect the PS bead size.

3.
RSC Adv ; 11(37): 22842-22848, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-35480453

ABSTRACT

The direct formic acid fuel cell (DFAFC) is one of the most promising direct liquid fuel cells. Pd is the most active catalyst towards formic oxidation, however, it suffers from CO-like poisoning and instability in acidic media. Blending formic acid with ethanol is known to synergistically enhance the Pt catalytic activity of Pt. However, it has not been studied in the case of Pd. In this study, ethanol/formic acid blends were tested, aiming at understanding the effect of ethanol on the formic acid oxidation mechanism at Pd and how the direct and indirect pathways could be affected. The blends consisted of different formic acid (up to 4 M) and ethanol (up to 0.5 M) concentrations. The catalytic activity of a 40% Pd/C catalyst was tested in 0.1 M H2SO4 + XFA + YEtOH using cyclic voltammetry, while the catalyst resistance to poisoning in the presence and absence of ethanol was tested using chronopotentiometry. The use of these blends is found to not only eliminate the indirect pathway but also slowly decrease the direct pathway activity too. That is believed to be due to the different ethanol adsorption orientations at different potentials. This study should open the door for further studying the oxidation of FA/ethanol blends using different pHs and different Pd-based catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...