Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36991666

ABSTRACT

The recent widespread novel network technologies for programming data planes are remarkably enhancing the customization of data packet processing. In this direction, the Programming Protocol-independent Packet Processors (P4) is envisioned as a disruptive technology, capable of configuring network devices in a highly customizable way. P4 enables network devices to adapt their behaviors to mitigate malicious attacks (e.g., denial of service). Distributed ledger technologies (DLTs), such as blockchain, allow secure reporting alerts on malicious actions detected across different areas. However, the blockchain suffers from major scalability concerns due to the consensus protocols needed to agree on a global state of the network. To overcome these limitations, new solutions have recently emerged. IOTA is a next-generation distributed ledger engineered to tackle the scalability limits while still providing the same security capabilities such as immutability, traceability, and transparency. This article proposes an architecture that integrates a P4-based data plane software-defined network (SDN) and an IOTA layer employed to notify about networking attacks. Specifically, we propose a fast, secure, and energy-efficient DLT-enabled architecture that combines the IOTA data structure, named Tangle, with the SDN layer to detect and notify about network threats.

2.
Sensors (Basel) ; 22(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35746189

ABSTRACT

Network management strategies depend on a timely and accurate knowledge of the network performance measures. Among these, one of the most relevant is the delay of the links, which unfortunately is not easy to measure with accuracy, especially when considering multi-hop paths. This is a classical networking problem, for which several solutions have been proposed. Nonetheless, we argue in this manuscript that there is still some room for improving accuracy and effectiveness in the measurement. This paper proposes a new solution based on the exploitation of the P4 data plane programming language. The basic idea is to handle lightweight probe packets that are forged ad-hoc at the edge of a link and processed at the other edge. Hosts generate the probe packets that are then exploited by the P4 programs in the switches to implement the measure. This approach provides an accurate and reliable measure of the link transit time, also effective in multi-hop links. In this latter case, we show that the measurement is not influenced much by the packet loss when the network is overloaded, thus providing more reliable results with respect to more conventional tools such as the classical ping utility. The manuscript explains the proposed P4 solution; then, it provides a comparison with several other approaches found in the literature, showing that outperform most of them, and finally show the behavior of the proposed methodology when facing a multi hop network path on a congested network to prove its robustness.

SELECTION OF CITATIONS
SEARCH DETAIL
...