Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(7): e0270463, 2022.
Article in English | MEDLINE | ID: mdl-35895732

ABSTRACT

The Salicornia L. has been considered one of the most taxonomically challenging genera due to high morphological plasticity, intergradation between related species, and lack of diagnostic features in preserved herbarium specimens. In the United Arab Emirates (UAE), only one species of this genus, Salicornia europaea, has been reported, though investigating its identity at the molecular level has not yet been undertaken. Moreover, based on growth form and morphology variation between the Ras-Al-Khaimah (RAK) population and the Umm-Al-Quwain (UAQ) population, we suspect the presence of different species or morphotypes. The present study aimed to initially perform species identification using multilocus DNA barcode markers from chloroplast DNA (cpDNA) and nuclear ribosomal DNA (nrDNA), followed by the genetic divergence between two populations (RAK and UAQ) belonging to two different coastal localities in the UAE. The analysis resulted in high-quality multilocus barcode sequences subjected to species discrimination through the unsupervised OTU picking and supervised learning methods. The ETS sequence data from our study sites had high identity with the previously reported sequences of Salicornia persica using NCBI blast and was further confirmed using OTU picking methods viz., TaxonDNAs Species identifier and Assemble Species by Automatic Partitioning (ASAP). Moreover, matK sequence data showed a non-monophyletic relationship, and significant discrimination between the two populations through alignment-based unsupervised OTU picking, alignment-free Co-Phylog, and alignment & alignment-free supervised learning approaches. Other markers viz., rbcL, trnH-psbA, ITS2, and ETS could not distinguish the two populations individually, though their combination with matK (cpDNA & cpDNA+nrDNA) showed enough population discrimination. However, the ITS2+ETS (nrDNA) exhibited much higher genetic divergence, further splitting both the populations into four haplotypes. Based on the observed morphology, genetic divergence, and the number of haplotypes predicted using the matK marker, it can be suggested that two distinct populations (RAK and UAQ) do exist. Further extensive morpho-taxonomic studies are required to determine the inter-population variability of Salicornia in the UAE. Altogether, our results suggest that S. persica is the species that grow in the present study area in UAE, and do not support previous treatments as S. europaea.


Subject(s)
Chenopodiaceae , DNA Barcoding, Taxonomic , Chenopodiaceae/genetics , DNA Barcoding, Taxonomic/methods , DNA, Chloroplast/genetics , DNA, Plant/genetics , Genetic Markers , Phylogeny , Sequence Analysis, DNA , Species Specificity , Supervised Machine Learning
2.
Plants (Basel) ; 10(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34961211

ABSTRACT

Arabia is the largest peninsula in the world, with >3000 species of vascular plants. Not much effort has been made to generate a multi-locus marker barcode library to identify and discriminate the recorded plant species. This study aimed to determine the reliability of the available Arabian plant barcodes (>1500; rbcL and matK) at the public repository (NCBI GenBank) using the unsupervised and supervised methods. Comparative analysis was carried out with the standard dataset (FINBOL) to assess the methods and markers' reliability. Our analysis suggests that from the unsupervised method, TaxonDNA's All Species Barcode criterion (ASB) exhibits the highest accuracy for rbcL barcodes, followed by the matK barcodes using the aligned dataset (FINBOL). However, for the Arabian plant barcode dataset (GBMA), the supervised method performed better than the unsupervised method, where the Random Forest and K-Nearest Neighbor (gappy kernel) classifiers were robust enough. These classifiers successfully recognized true species from both barcode markers belonging to the aligned and alignment-free datasets, respectively. The multi-class classifier showed high species resolution following the two classifiers, though its performance declined when employed to recognize true species. Similar results were observed for the FINBOL dataset through the supervised learning approach; overall, matK marker showed higher accuracy than rbcL. However, the lower rate of species identification in matK in GBMA data could be due to the higher evolutionary rate or gaps and missing data, as observed for the ASB criterion in the FINBOL dataset. Further, a lower number of sequences and singletons could also affect the rate of species resolution, as observed in the GBMA dataset. The GBMA dataset lacks sufficient species membership. We would encourage the taxonomists from the Arabian Peninsula to join our campaign on the Arabian Barcode of Life at the Barcode of Life Data (BOLD) systems. Our efforts together could help improve the rate of species identification for the Arabian Vascular plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...