Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biol Psychiatry ; 92(4): 323-334, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35227461

ABSTRACT

BACKGROUND: The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important step toward understanding the pathophysiology of this common developmental disability. METHODS: Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from the Arabian Peninsula. For in vivo functional studies of the implicated gene's function in cognition, Drosophila melanogaster and mice with targeted interference of the orthologous gene were used. Behavioral, electrophysiological, and structural magnetic resonance imaging analyses were conducted for phenotypic testing. RESULTS: Homozygous premature termination codons in PDZD8, encoding an endoplasmic reticulum-anchored lipid transfer protein, showed cosegregation with syndromic ID in both families. Drosophila melanogaster with knockdown of the PDZD8 ortholog exhibited impaired long-term courtship-based memory. Mice homozygous for a premature termination codon in Pdzd8 exhibited brain structural, hippocampal spatial memory, and synaptic plasticity deficits. CONCLUSIONS: These data demonstrate the involvement of homozygous loss-of-function mutations in PDZD8 in a neurodevelopmental cognitive disorder. Model organisms with manipulation of the orthologous gene replicate aspects of the human phenotype and suggest plausible pathophysiological mechanisms centered on disrupted brain development and synaptic function. These findings are thus consistent with accruing evidence that synaptic defects are a common denominator of ID and other neurodevelopmental conditions.


Subject(s)
Cognitive Dysfunction , Intellectual Disability , Adaptor Proteins, Signal Transducing/genetics , Animals , Cognitive Dysfunction/genetics , Consanguinity , Drosophila , Drosophila melanogaster , Humans , Intellectual Disability/genetics , Mice , Mutation/genetics
2.
J Community Genet ; 13(3): 303-311, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35179721

ABSTRACT

Studies on the acceptance of prenatal diagnosis and termination of pregnancy for single gene disorders within Islamic societies in the Middle East are limited. A few have examined the attitudes toward pregnancy termination for fetal indications, but a dearth of published data exists on actual behavior and uptake. This study reports on all prenatal diagnosis requests for single gene disorders, from the Sultanate of Oman, over 9 years. A retrospective study was conducted during which the medical records of all women who performed prenatal diagnoses for single gene disorders were reviewed. A total of 148 invasive procedures were performed for 114 families. The total number of yearly requests for prenatal diagnosis increased exponentially from three in 2012 to 21 in 2020. Sixty-four different diagnoses were tested for with the majority being autosomal recessive in nature. Seventy-one percent (28/39) of cases where an affected pregnancy was identified were terminated. Fifty-two of the 114 women (45.6%) repeated prenatal diagnosis in a future pregnancy. Seventy-two couples (63%) were consanguineous parents related as second cousins or closer. The majority of tests performed were for couples from Muscat (27%), Albatinah (27%), and Alsharqiya (20.3%) governorates in Oman. The findings of this study provide evidence that prenatal diagnosis is an acceptable reproductive option to prevent the occurrence of genetic disorders that meet termination eligibility criteria as outlined by the Islamic Jurisprudence (Fiqh) Council Fatwa, among Omani Muslim couples.

3.
J Perinat Med ; 46(9): 968-974, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-28822227

ABSTRACT

OBJECTIVE: The purpose of this study was to determine the frequency of non-immune hydrops fetalis (NIHF) among all pregnancies referred for prenatal care at Sultan Qaboos University Hospital (SQUH) during the study period and to evaluate the underlying etiologies of NIH. STUDY DESIGN: All pregnancies referred to SQUH between February 2014 and December 2015 were identified, and all pregnancies meeting the diagnosis of NIHF were included in this study. All cases of NIHF referred to our center during this period underwent standard systematic diagnostic work-up that included biochemical and molecular studies in addition to the standard investigations for hydrops fetalis. Clinical characteristics and results of the diagnostic work-up were retrospectively reviewed. RESULTS: A total of 3234 pregnancies were referred for prenatal care at SQUH during the study period, and 12 pregnancies were affected by NIHF. An underlying diagnosis was established in nine cases, and the majority of cases (7/9) were caused by inborn errors of metabolism (IEM). These included a novel homozygous variant in the AARS2 gene (5/7) and two cases of galactosialidosis (2/7). CONCLUSION: IEM was a major cause of NIHF in this cohort. The AARS2 variant accounts for a significant number of cases with NIHF in this cohort of Omani patients.


Subject(s)
Aspartate-tRNA Ligase/genetics , Hydrops Fetalis , Lysosomal Storage Diseases , Metabolism, Inborn Errors , Adult , Female , Homozygote , Humans , Hydrops Fetalis/diagnosis , Hydrops Fetalis/epidemiology , Hydrops Fetalis/etiology , Hydrops Fetalis/genetics , Lysosomal Storage Diseases/complications , Lysosomal Storage Diseases/diagnosis , Lysosomal Storage Diseases/epidemiology , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/epidemiology , Oman/epidemiology , Pregnancy , Prenatal Diagnosis/methods , Prenatal Diagnosis/statistics & numerical data , Retrospective Studies , Risk Assessment
4.
Sultan Qaboos Univ Med J ; 16(4): e520-e524, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28003905

ABSTRACT

Tuberous sclerosis complex (TSC) is a multisystem neurocutaneous disorder inherited in an autosomal dominant manner and characterised by benign tumours in the brain and other vital organs such as the heart, eyes, kidneys, skin and lungs. Links between autism spectrum disorder (ASD) and TSC have been postulated for many decades, with TSC considered to be one of the main syndromic causes of ASD; however, precise confirmation of a relationship between these two disorders required validated diagnostic tools. Fortunately, accurate evaluation of this relationship is now possible with standardised criteria for ASD diagnosis. We report three children who presented to the Sultan Qaboos University Hospital, Muscat, Oman, between 2014 and 2015 with ASD and TSC. These cases demonstrate the spectrum of neuropsychiatric involvement in TSC and highlight the importance of screening children with TSC for ASD features in order to encourage the early enrolment of these children in educational and rehabilitation programmes.

5.
Sultan Qaboos Univ Med J ; 16(3): e375-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27606123

ABSTRACT

Congenital contractural arachnodactyly, commonly known as Beal's syndrome, is an extremely rare genetic disorder caused by mutations in the fibrillin-2 (FBN2) gene located on chromosome 5q23. It is an autosomal dominant inherited connective tissue disorder characterised by a Marfan-like body habitus, contractures, abnormally shaped ears and kyphoscoliosis. We report a seven-year-old Omani male who presented to the Sultan Qaboos University Hospital, Muscat, Oman, in 2014 with seizures. He was noted to have certain distinctive facial features and musculoskeletal manifestations; he was subsequently diagnosed with Beal's syndrome. Sequencing of the FBN2 gene revealed that the patient had a novel mutation which was also present in his mother; however, she had only a few facial features indicative of Beal's syndrome and no systemic involvement apart from a history of childhood seizures. To the best of the authors' knowledge, this is the first report of Beal's syndrome with seizure symptoms as a potential feature.

6.
Sultan Qaboos Univ Med J ; 15(3): e415-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26357560

ABSTRACT

The duplication of the short arm of chromosome 7 as de novo is extremely rare. The phenotype spectrum varies depending on the region of duplication. We report a case of de novo duplication of chromosomal region 7p21.1p22.2 in a three-year-old male child with autism who presented to the Sultan Qaboos University Hospital in Muscat, Oman, in January 2012. The patient was diagnosed with craniofacial dysmorphism, global developmental delay, hypotonia and bilateral cryptorchidism. The duplication was detected by conventional G-banded karyotype analysis/fluorescence in situ hybridisation and confirmed by array comparative genomic hybridisation. To the best of the authors' knowledge, this is the first report of chromosomal region 7p21.1 involvement in an autistic patient showing features of a 7p duplication phenotype. Identifying genes in the duplicated region using molecular techniques is recommended to promote characterisation of the phenotype and associated condition. It may also reveal the possible role of these genes in autism spectrum disorder.

7.
J Med Case Rep ; 8: 12, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24393243

ABSTRACT

INTRODUCTION: Resistance to thyroid hormone is a rare syndrome, where although the level of thyroid hormone is elevated, the level of thyroid stimulating hormone is not suppressed. The patient in our case report is, to the best of our knowledge, the first with this syndrome identified in Oman. CASE PRESENTATION: In one Omani family, a 15-year-old girl of Arabian origin was pre-diagnosed with resistance to thyroid hormone. Blood sample was collected and deoxyribonucleic acid was isolated for molecular genetic testing. The results revealed a rare mutation A268G in the gene for thyroid hormone receptor beta. We believe that this mutation is the cause of the pathology in our patient. CONCLUSION: We report the presence of a rare mutation in the thyroid hormone receptor beta gene for the first time in the Omani population. Due to the rates of consanguinity being high among the Omani population, we are aiming to screen our patient's family members and provide genetic counseling.

8.
Am J Med Genet A ; 161A(9): 2174-82, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23913548

ABSTRACT

Imprinting disorders are associated with mutations and epimutations affecting imprinted genes, that is those whose expression is restricted by parent of origin. Their diagnosis is challenging for two reasons: firstly, their clinical features, particularly prenatal and postnatal growth disturbance, are heterogeneous and partially overlapping; secondly, their underlying molecular defects include mutation, epimutation, copy number variation, and chromosomal errors, and can be further complicated by somatic mosaicism and multi-locus methylation defects. It is currently unclear to what extent the observed phenotypic heterogeneity reflects the underlying molecular pathophysiology; in particular, the molecular and clinical diversity of multilocus methylation defects remains uncertain. To address these issues we performed comprehensive methylation analysis of imprinted genes in a research cohort of 285 patients with clinical features of imprinting disorders, with or without a positive molecular diagnosis. 20 of 91 patients (22%) with diagnosed epimutations had methylation defects of additional imprinted loci, and the frequency of developmental delay and congenital anomalies was higher among these patients than those with isolated epimutations, indicating that hypomethylation of multiple imprinted loci is associated with increased diversity of clinical presentation. Among 194 patients with clinical features of an imprinting disorder but no molecular diagnosis, we found 15 (8%) with methylation anomalies, including missed and unexpected molecular diagnoses. These observations broaden the phenotypic and epigenetic definitions of imprinting disorders, and show the importance of comprehensive molecular testing for patient diagnosis and management.


Subject(s)
DNA Methylation , Epigenomics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genomic Imprinting , Cohort Studies , Epigenomics/methods , Genetic Heterogeneity , Genetic Loci , Genetic Testing , Humans , Phenotype
9.
Mol Cancer ; 7: 68, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18718023

ABSTRACT

We have identified an alternative pathway of tumorigenesis in sporadic colon cancer, involving microsatellite instability due to mismatched repair methylation, which may be driven by mutations in the BRAF gene (V600E). Colorectal cancer (CRC) is the most common cancer in the world, and African Americans show a higher incidence than other populations in the United States. We analyzed sporadic CRCs in Omani (of African origin, N = 61), Iranian (of Caucasian origin, N = 53) and African American (N = 95) patients for microsatellite instability, expression status of mismatched repair genes (hMLH1, hMSH2) and presence of the BRAF (V600E) mutation. In the Omani group, all tumors with BRAF mutations were located in the left side of the colon, and for African Americans, 88% 7 of tumors with BRAF mutations were found in the right side of the colon. In African Americans, 31% of tumors displayed microsatellite instability at two or more markers (MSI-H), while this rate was 26% and 13% for tumors in the Iranian and Omani groups, respectively. A majority of these MSI-H tumors were located in the proximal colon (right side) in African American and Iranian subjects, whereas most were located in the distal colon (left side) in Omani subjects. Defects in hMLH1 gene expression were found in 77% of MSI-H tumors in both African Americans and Iranians and in 38% of tumors in Omanis. BRAF mutations were observed in all subjects: 10% of tumors in African Americans (8/82), 2% of tumors in Iranians (1/53), and 19% of tumors in Omanis (11/59). Our findings suggest that CRC occurs at a younger age in Omani and Iranian patients, and these groups showed a lower occurrence of MSI-H than did African American patients. Our multivariate model suggests an important and significant role of hMLH1 expression and BRAF mutation in MSI-H CRC in these populations. The high occurrence of MSI-H tumors in African Americans may have significant implications for treatment, since patients with MSI-H lesions display a different response to chemotherapeutic agents such as 5-fluorouracil.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Colorectal Neoplasms/genetics , Microsatellite Instability , Nuclear Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Black or African American , Aged , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Genetics, Population , Humans , Iran , Male , Multivariate Analysis , MutL Protein Homolog 1 , Oman
SELECTION OF CITATIONS
SEARCH DETAIL
...