Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35055294

ABSTRACT

Metal-organic frameworks (MOFs) are a novel class of porous hybrid organic-inorganic materials that have attracted increasing attention over the past decade. MOFs can be used in chemical engineering, materials science, and chemistry applications. Recently, these structures have been thoroughly studied as promising platforms for biomedical applications. Due to their unique physical and chemical properties, they are regarded as promising candidates for disease diagnosis and drug delivery. Their well-defined structure, high porosity, tunable frameworks, wide range of pore shapes, ultrahigh surface area, relatively low toxicity, and easy chemical functionalization have made them the focus of extensive research. This review highlights the up-to-date progress of MOFs as potential platforms for disease diagnosis and drug delivery for a wide range of diseases such as cancer, diabetes, neurological disorders, and ocular diseases. A brief description of the synthesis methods of MOFs is first presented. Various examples of MOF-based sensors and DDSs are introduced for the different diseases. Finally, the challenges and perspectives are discussed to provide context for the future development of MOFs as efficient platforms for disease diagnosis and drug delivery systems.

2.
Environ Res ; 202: 111694, 2021 11.
Article in English | MEDLINE | ID: mdl-34274334

ABSTRACT

Endocrine-disrupting chemicals (EDCs) target the endocrine system by interfering with the natural hormones in the body leading to adverse effects on human and animal health. These chemicals have been identified as major polluting agents in wastewater effluents. Pharmaceuticals, personal care products, industrial compounds, pesticides, dyes, and heavy metals are examples of substances that could be considered endocrine active chemicals. In humans, these chemicals could cause obesity, cancer, Alzheimer's disease, autism, reproductive abnormalities, and thyroid problems. While in wildlife, dysfunctional gene expression could lead to the feminization of some aquatic organisms, metabolic diseases, cardiovascular risk, and problems in the reproductive system as well as its levels of hatchability and vitellogenin. EDCs could be effectively removed from wastewater using advanced technologies such as reverse osmosis, membrane treatment, ozonation, advanced oxidation, filtration, and biodegradation. However, adsorption has been proposed as a more promising and sustainable method for water treatment than any other reported technique. Increased attention has been paid to biodegradable polymers and their nano-composites as promising adsorbents for the removal of EDCs from wastewater. These polymers could be either natural, synthetic, or a combination of both. This review presents a summary of the most relevant cases where natural and synthetic biodegradable polymers have been used for the successful removal of EDCs from wastewater. It demonstrates the effectiveness of these polymers as favorable adsorbents for novel wastewater treatment technologies. Hitherto, very limited work has been published on the use of both natural and synthetic biodegradable polymers to remove EDCs from wastewater, as most of the studies focused on the utilization of only one type, either natural or synthetic. Therefore, this review could pave the way for future exploration of biodegradable polymers as promising and sustainable adsorbents for the removal of various types of pollutants from wastewater.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Water Purification , Animals , Endocrine Disruptors/analysis , Humans , Polymers , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...