Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(13): 7830-7836, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33196712

ABSTRACT

We have measured high-resolution time-of-flight (TOF) spectra of methane scattered from an Ir(111) surface at an incident energy of 81 meV. The angular distributions of scattered CH4 reveal the presence of a sharp and intense specular peak in addition to sharp features corresponding to rotationally inelastic diffraction (RID) peaks along the two main symmetry directions of Ir(111). TOF spectra have been recorded at several RID positions for the two high-symmetry directions. The data show that the scattering dynamics of CH4 is more complex than the one reported for H2/D2, where energy losses in TOF correspond to the expected excitation/deexcitation RID energy transitions. For CH4, this is the case only for RID peaks showing up far from the specular peak, whereas those appearing close to the specular position present different behaviors, depending on the incident direction. The results are compared with Ne scattering TOF data, which allows to assess the relevance of multiphonon scattering in the energy-exchange process. Finally, we report experimental evidence of selective adsorption resonances detected with CH4 beams. This will allow characterizing the CH4-metal surface physisorption well by measuring angular distributions with CH4 beams.

2.
J Phys Chem Lett ; 11(21): 9003-9011, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33035062

ABSTRACT

Tin diselenide (SnSe2) is a van der Waals semiconductor, which spontaneously forms a subnanometric SnO2 skin once exposed to air. Here, by means of surface-science spectroscopies and density functional theory, we have investigated the charge redistribution at the SnO2-SnSe2 heterojunction in both oxidative and humid environments. Explicitly, we find that the work function of the pristine SnSe2 surface increases by 0.23 and 0.40 eV upon exposure to O2 and air, respectively, with a charge transfer reaching 0.56 e-/SnO2 between the underlying SnSe2 and the SnO2 skin. Remarkably, both pristine SnSe2 and defective SnSe2 display chemical inertness toward water, in contrast to other metal chalcogenides. Conversely, the SnO2-SnSe2 interface formed upon surface oxidation is highly reactive toward water, with subsequent implications for SnSe2-based devices working in ambient humidity, including chemical sensors. Our findings also imply that recent reports on humidity sensing with SnSe2 should be reinterpreted, considering the pivotal role of the oxide skin in the interaction with water molecules.

3.
J Phys Chem Lett ; 10(7): 1574-1580, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30855971

ABSTRACT

Diffraction with matter waves has been reported since the beginning of quantum mechanics. In free space, diffraction effects have been observed even with objects as large as C60 molecules. However, in scattering from a solid surface, pure elastic diffraction features have never been observed with molecules larger than D2. Here we report the observation of pure molecular diffraction for CH4 scattered off of an Ir(111) surface. These results prove that quantum coherence is preserved, despite the small separation between rotational levels and the interaction with surface phonons. Density functional theory calculations of the potential energy surface provide some clues to understand the larger corrugation sampled by CH4 molecules in comparison to Ne atoms. Our results show that isotope separation of polyatomic molecules may be possible using gas-surface diffraction.

4.
J Phys Condens Matter ; 31(13): 135901, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30625425

ABSTRACT

The ability of the different approaches proposed to date to include the effects of van der Waals (vdW) dispersion forces in density functional theory (DFT) is currently under debate. Here, we used the diffraction of He on a Ru(0 0 0 1) surface as a challenging benchmark system to analyze the suitability of several representative approaches, from the ones correcting the exchange-correlation generalized gradient approximation (GGA) functional, to the ones correcting the DFT energies through pairwise-based methods. To perform our analysis, we have built seven continuous potential energy surfaces (PESs) and carried out quantum dynamics simulations using a multi-configuration time-dependent Hartree method. Our analysis reveals that standard DFT within the PBE-GGA framework, although it overestimates diffraction probabilities, yields the best results in comparison with available experimental measurements. On the other hand, although several of the existing vdW DFT approaches yield physisorption wells in very good agreement with experiment, they all seem to overestimate the long-distance corrugation of the PES, the region probed by He scattering, resulting in a large overestimation of diffraction probabilities.

5.
J Chem Phys ; 149(8): 084703, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30193506

ABSTRACT

We have measured the temperature dependence of angular distributions of CH4 from Pt(111) at an incident energy of 109 meV. A broad angular distribution has been observed along the two main symmetry directions, whereby the peak center shifts from the supra-specular position to the sub-specular position when the surface temperature increases from 120 K to 800 K. Different widths have been measured for the scattering patterns along the [ 1¯01 ] and the [ 2¯11 ] azimuthal directions. Based on calculations performed within the binary collision model, these differences have been ascribed to different corrugations of the CH4-Pt(111) interaction potential along the two high-symmetry directions. This corrugation has been estimated from the model calculations to amount ∼0.03 Å, a factor of three larger than the one measured with helium diffraction.

6.
Phys Chem Chem Phys ; 19(32): 21267-21271, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28762404

ABSTRACT

We have measured high-resolution angular distributions of methane scattered from a Ni(111) surface at incident energies between 68.9 meV and 108.6 meV. A sharp and intense specular peak has been observed, in addition to sharp features corresponding to rotationally inelastic diffraction (RID) peaks along the two main symmetry directions of Ni(111). The intensity of the most intense RID peaks is ca. 50% of the specular one. The observation of sharp, coherent elastic peaks at such low incident energies suggests that single scattering dominates over trapping at these energies, and that the depth of the van der Waals well should be lower than 60 meV. In contrast, a broad angular distribution shifted from the specular position is observed from a graphene-covered Ni(111) surface under identical incident conditions. These results open up the possibility of studying the physisorption well between CH4 and a transition metal surface using high-resolution molecular beams.

7.
J Phys Condens Matter ; 28(10): 103005, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26886508

ABSTRACT

The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate's Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...