Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolites ; 12(10)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36295808

ABSTRACT

The current research was designed to explore the Blepharispermum hirtum Oliver (Asteraceae) stem and leaves essential oil (EO) composition extracted through hydro-distillation using gas chromatography-mass spectrometry (GC-MS) analysis for the first time. The EOs of the stem and leaves of B. hirtum were comparatively studied for the in vitro antidiabetic and anticancer potential using in vitro α-glucosidase and an MTT inhibition assay, respectively. In both of the tested samples, the same number of fifty-eight compounds were identified and contributed 93.88% and 89.07% of the total oil composition in the EOs of the stem and leaves of B. hirtum correspondingly. However, camphene was observed as a major compound (23.63%) in the stem EO, followed by ß-selinene (5.33%) and ß-elemene (4.66%) and laevo-ß-pinene (4.38%). While in the EO of the leaves, the dominant compound was found to be 24-norursa-3,12-diene (9.08%), followed by ß-eudesmol (7.81%), ß-selinene (7.26%), thunbergol (5.84%), and caryophyllene oxide (5.62%). Significant antidiabetic potential was observed with an IC50 of 2.10 ± 0.57 µg/mL by the stem compared to the EO of the leaves of B. hirtum, having an IC50 of 4.30 ± 1.56 µg/mL when equated with acarbose (IC50 = 377.71 ± 1.34 µg/mL). Furthermore, the EOs offered considerable cytotoxic capabilities for MDA-MB-231. However, the EO of the leaves presented an IC50 = 88.4 ± 0.5 µg/mL compared to the EO of the stem of B. hirtum against the triple-negative breast cancer (MDA-MB-231) cell lines with an IC50 = 123.6 ± 0.8 µg/mL. However, the EOs were also treated with the human breast epithelial (MCF-10A) cell line, and from the results, it has been concluded that these oils did not produce much harm to the normal cell lines. Hence, the present research proved that the EOs of B. hirtum might be used to cure diabetes mellitus and human breast cancer. Moreover, further studies are considered to be necessary to isolate the responsible bioactive constituents to devise drugs for the observed activities.

2.
Int J Biol Macromol ; 167: 233-244, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33249154

ABSTRACT

Diabetes mellitus, a progressive chronic disease, characterized by the abnormal carbohydrate metabolism is associated with severe health complications including long term dysfunction or failure of several organs, cardiovascular and micro-angiopathic problems (neuropathy, nephropathy, retinopathy). Despite the existence of diverse chemical structural libraries of α-glucosidase inhibitors, the limited diabetic treatment due to the adverse side effects such as abdominal distention, flatulence, diarrhoea, and liver damage associated with these inhibitors encourage the medicinal research community to design and develop new and potent inhibitors of α-glucosidase with better pharmacokinetic properties. In this perspective, we demonstrate the successful integration of common functional groups (ketone & ester) in one combined pharmacophore which is favorable for the formation of hydrogen bonds and other weaker interactions with the target proteins. These keto ester derivatives were screened for their α-glucosidase inhibition potential and the in vitro results revealed compound 3c as the highly active inhibitor with an IC50 value of 12.4 ± 0.16 µM compared to acarbose (IC50 = 942 ± 0.74 µM). This inhibition potency was ~76-fold higher than acarbose. Other potent compounds were 3f (IC50 = 28.0 ± 0.28 µM), 3h (IC50 = 33.9 ± 0.09 µM), 3g (IC50 = 34.1 ± 0.04 µM), and 3d (IC50 = 76.5 ± 2.0 µM). In addition, the emerging use of carbonic anhydrase inhibitors for the treatment of diabetic retinopathy (a leading cause of vision loss) prompted us to screen the keto ester derivatives for the inhibition of carbonic anhydrase-II. Compound 3b was found significantly active against carbonic anhydrase-II with an IC50 of 16.5 ± 0.92 µM (acetazolamide; IC50 = 18.2 ± 1.23 µM). Compound 3a also exhibited comparable potency with an IC50 value of 18.9 ± 1.08 µM. Several structure-activity relationship analyses depicted the influence of the substitution pattern on both the aromatic rings. Molecular docking analysis revealed the formation of several H-bonding interactions through the ester carbonyl and the nitro oxygens of 3c with the side chains of His348, Arg212 and His279 in the active pocket of α-glucosidase whereas 3b interacted with His95, -OH of Thr197, Thr198 and WAT462 in the active site of carbonic anhydrase-II. Furthermore, evaluation of ADME properties suggests the safer pharmacological profile of the tested derivatives.


Subject(s)
Carbonic Anhydrase II/chemistry , Carbonic Anhydrase Inhibitors/chemistry , Esters/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Ketones/chemistry , alpha-Glucosidases/chemistry , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Chemical Phenomena , Chemistry Techniques, Synthetic , Enzyme Activation/drug effects , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Kinetics , Models, Molecular , Molecular Conformation , Molecular Structure , Structure-Activity Relationship
3.
Bioorg Med Chem ; 28(11): 115507, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32327352

ABSTRACT

The DNA repair enzyme AAG has been shown in mice to promote tissue necrosis in response to ischaemic reperfusion or treatment with alkylating agents. A chemical probe inhibitor is required for investigations of the biological mechanism causing this phenomenon and as a lead for drugs that are potentially protective against tissue damage from organ failure and transplantation, and alkylative chemotherapy. Herein, we describe the rationale behind the choice of arylmethylpyrrolidines as appropriate aza-nucleoside mimics for an inhibitor followed by their synthesis and the first use of a microplate-based assay for quantification of their inhibition of AAG. We finally report the discovery of an imidazol-4-ylmethylpyrrolidine as a fragment-sized, weak inhibitor of AAG.


Subject(s)
Alkylating Agents/pharmacology , Aza Compounds/pharmacology , DNA Glycosylases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Nucleosides/pharmacology , Alkylating Agents/chemical synthesis , Alkylating Agents/chemistry , Animals , Aza Compounds/chemical synthesis , Aza Compounds/chemistry , Crystallography, X-Ray , DNA Glycosylases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Models, Molecular , Molecular Structure , Nucleosides/chemical synthesis , Nucleosides/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...