Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375332

ABSTRACT

A new chlorobenzylidene imine ligand, (E)-1-((5-chloro-2-hydroxybenzylidene)amino) naphthalen-2-ol (HL), and its [Zn(L)(NO3)(H2O)3], [La(L)(NO3)2(H2O)2], [VO(L)(OC2H5)(H2O)2], [Cu(L)(NO3)(H2O)3], and [Cr(L)(NO3)2(H2O)2], complexes were synthesized and characterized. The characterization involved elemental analysis, FT-IR, UV/Vis, NMR, mass spectra, molar conductance, and magnetic susceptibility measurements. The obtained data confirmed the octahedral geometrical structures of all metal complexes, while the [VO(L)(OC2H5)(H2O)2] complex exhibited a distorted square pyramidal structure. The complexes were found to be thermally stable based on their kinetic parameters determined using the Coats-Redfern method. The DFT/B3LYP technique was employed to calculate the optimized structures, energy gaps, and other important theoretical descriptors of the complexes. In vitro antibacterial assays were conducted to evaluate the complexes' potential against pathogenic bacteria and fungi, comparing them to the free ligand. The compounds exhibited excellent fungicidal activity against Candida albicans ATCC: 10231 (C. albicans) and Aspergillus negar ATCC: 16404 (A. negar), with inhibition zones of HL, [Zn(L)(NO3)(H2O)3], and [La(L)(NO3)2(H2O)2] three times higher than that of the Nystatin antibiotic. The DNA binding affinity of the metal complexes and their ligand was investigated using UV-visible, viscosity, and gel electrophoresis methods, suggesting an intercalative binding mode. The absorption studies yielded Kb values ranging from 4.40 × 105 to 7.30 × 105 M-1, indicating high binding strength to DNA comparable to ethidium bromide (value 107 M-1). Additionally, the antioxidant activity of all complexes was measured and compared to vitamin C. The anti-inflammatory efficacy of the ligand and its metal complexes was evaluated, revealing that [Cu(L)(NO3)(H2O)3] exhibited the most effective activity compared to ibuprofen. Molecular docking studies were conducted to explore the binding nature and affinity of the synthesized compounds with the receptor of Candida albicans oxidoreductase/oxidoreductase INHIBITOR (PDB ID: 5V5Z). Overall, the combined findings of this work demonstrate the potential of these new compounds as efficient fungicidal and anti-inflammatory agents. Furthermore, the photocatalytic effect of the Cu(II) Schiff base complex/GO was examined.


Subject(s)
Anti-Infective Agents , Coordination Complexes , Schiff Bases/chemistry , Antioxidants/pharmacology , Methylene Blue , Coordination Complexes/chemistry , Molecular Docking Simulation , Ligands , Photolysis , Spectroscopy, Fourier Transform Infrared , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA/chemistry , Zinc , Anti-Inflammatory Agents/pharmacology , Oxidoreductases
2.
Bioorg Chem ; 114: 105106, 2021 09.
Article in English | MEDLINE | ID: mdl-34182310

ABSTRACT

The pharmacological efficacy of the variety tetradentate ligands encouraged us to design attractive compounds through effective synthetic procedure. The prepared Schiff base ligand 6,6'-((1E,1'E)-((4-chloro-1,2-phenylene)bis(azaneylylidene))bis(methaneylylidene))bis(2-ethoxy phenol (H2L), which derived from 4-chloro-o-phenylenediamine and 3-ethoxy-salicylaldehyde and its VO(II), Zn(II) and ZrO(II) metal chelates, have been synthesized and characterized with aim of that it may struggle the invasion of drug resistance. The chemical structural of studied compounds were discussed by TGA, elemental analysis, UV-Vis., 1H NMR, 13C NMR, FTIR, mass spectral, PXRD, molar conductance, magnetic susceptibility measurements and density functional theory. The results assigned square pyramid geometries for [VOL] and [ZrOL].2H2O chelates and an octahedral geometry for [ZnL(H2O)2].2H2O chelate. Powder XRD data showed that the complexes are monoclinic with polycrystalline nature. The results of CT-DNA interaction with the titled chelates showed that the binding between CT-DNA and the metal complexes occurs through intercalation mode. Their CT-DNA binding efficiency estimated in terms of their binding constants (Kb), which gave the order: VOL (6.9 × 105) > ZrOL (6.3 × 105) > ZnL(H2O)2 (5.5 × 105). The antimicrobial activities of the synthesized compounds were tested against selected fungal and bacterial strains using well diffusion technique. The obtained chelates showed higher antifungal and antibacterial activities than their corresponding ligand. Furthermore, the M-complexes showed higher potent cytotoxic effect toward HEK-293, human colorectal HepG-2, HCT-116 and MCF-7 adenocarcinoma cell lines compared to the free H2L ligand. Investigation of antioxidant property represented that all the prepared complexes have better radical scavenging potencies against DPPH radicals than the free H2L ligand. To study the molecular docking of proposed compounds versus Tyrosine kinases receptor (TKR), we used AutoDock1.5.6rc3® suite. The current compounds (H2L, VOL, ZrOL and ZnL(H2O)2) and STI were found to bind with C-kit of TKR with HBs at ILE789.A, ILE808.A, ASP810.A, GLU640.A and TYR846 amino acid residue and the binding energies were - 8.9, -8.93, -8.83, -1.48 and -10.39 kcal/mol respectively.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Chelating Agents/pharmacology , DNA/chemistry , Density Functional Theory , Molecular Docking Simulation , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Bacteria/drug effects , Binding Sites , Cattle , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Dose-Response Relationship, Drug , Fungi/drug effects , Humans , Ligands , Metals, Heavy/chemistry , Metals, Heavy/pharmacology , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...