Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(4): 2377-2384, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38233221

ABSTRACT

Formate (HCOO-) is the most dominant intermediate identified during carbon dioxide electrochemical reduction (CO2ER). While previous studies showed that copper (Cu)-based materials that include Cu(0), Cu2O, and CuO are ideal catalysts for CO2ER, challenges to scalability stem from low selectivity and undesirable products in the -1.0-1.0 V range. There are few studies on the binding mechanism of intermediates and products for these systems as well as on changes to surface sites upon applying potential. Here, we use an in situ approach to study the redox surface chemistry of formate on Cu thin films deposited on Si wafers using a VeeMAX III spectroelectrochemical (SEC) cell compatible with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Spectra for surface species were collected in real time as a function of applied potential during cyclic voltammetry (CV) experiments. Results showed the reproducibility of CV curves on freshly prepared Cu/Si wafers with relatively high signal-to-noise ATR-FTIR absorbance features of surface species during these electrochemical experiments. The oxidation reaction of HCOO- to bicarbonate (HCO3-) was observed using ATR-FTIR at a voltage of 0.27 V. Samples were then subjected to reduction in the CV, and the aqueous phase products below the detection limit of the SEC-ATR-FTIR were identified using ion chromatography (IC). We report the formation of glycolate (H3C2O3-) and glyoxylate (HC2O3-) with trace amounts of oxalate (C2O42-), indicating that C-C coupling reactions proceed in these systems. Changes to the oxidation state of surface Cu were measured using X-ray photoelectron spectroscopy, which showed a reduction in Cu(0) and an increase in Cu(OH)2, indicating surface oxidation.

2.
Chem Commun (Camb) ; 60(14): 1840-1855, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38268472

ABSTRACT

Atmospheric aerosol effects on ecological and human health remain uncertain due to their highly complex and evolving nature when suspended in air. Atmospheric chemistry, global climate/oceanic and health exposure models need to incorporate more realistic representations of aerosol particles, especially their bulk and surface chemistry, to account for the evolution in aerosol physicochemical properties with time. (Photo)chemistry driven by iron (Fe) in atmospheric aerosol particles from natural and anthropogenic sources remains limited in these models, particularly under aerosol liquid water conditions. In this feature article, recent advances from our work on Fe (photo)reactivity in multicomponent aerosol systems are highlighted. More specifically, reactions of soluble Fe with aqueous extracts of biomass burning organic aerosols and proxies of humic like substances leading to brown carbon formation are presented. Some of these reactions produced nitrogen-containing gaseous and condensed phase products. For comparison, results from these bulk aqueous phase chemical studies were compared to those from heterogeneous reactions simulating atmospheric aging of Fe-containing reference materials. These materials include Arizona test dust (AZTD) and combustion fly ash particles. Also, dissolution of Fe and other trace elements is presented from simulated human exposure experiments to highlight the impact of aerosol aging on levels of trace metals. The impacts of these chemical reactions on aerosol optical, hygroscopic and morphological properties are also emphasized in light of their importance to aerosol-radiation and aerosol-cloud interactions, in addition to biogeochemical processes at the sea/ocean surface microlayer upon deposition. Future directions for laboratory studies on Fe-driven multiphase chemistry are proposed to advance knowledge and encourage collaborations for efficient utilization of expertise and resources among climate, ocean and health scientific communities.

3.
Commun Chem ; 6(1): 198, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37717093

ABSTRACT

Heterogeneous reaction of gas phase NO2 with atmospheric humic-like substances (HULIS) is potentially an important source of volatile organic compounds (VOCs) including nitrogen (N)-containing compounds, a class of brown carbon of emerging importance. However, the role of ubiquitous water-soluble aerosol components in this multiphase chemistry, namely nitrate and iron ions, remains largely unexplored. Here, we used secondary electrospray ionization ultrahigh-resolution mass spectrometry for real-time measurements of VOCs formed during the heterogeneous reaction of gas phase NO2 with a solution containing gallic acid (GA) as a proxy of HULIS at pH 5 relevant for moderately acidic aerosol particles. Results showed that the number of detected N-containing organic compounds largely increased from 4 during the NO2 reaction with GA in the absence of nitrate and iron ions to 55 in the presence of nitrate and iron ions. The N-containing compounds have reduced nitrogen functional groups, namely amines, imines and imides. These results suggest that the number of N-containing compounds is significantly higher in deliquescent aerosol particles due to the influence of relatively higher ionic strength from nitrate ions and complexation/redox reactivity of iron cations compared to that in the dilute aqueous phase representative of cloud, fog, and rain water.

4.
Commun Chem ; 6(1): 52, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36941372
6.
Environ Sci Process Impacts ; 25(2): 229-240, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-35815759

ABSTRACT

Nitrogen-containing Organic Carbon (NOC) is a major constituent of atmospheric aerosols and they have received significant attention in the atmospheric science community. While extensive research and advancements have been made regarding their emission sources, concentrations, and their secondary formation in the atmosphere, little is known about their water uptake efficiencies and their subsequent role in climate, air quality, and visibility. In this study, we investigated the water uptake of two sparingly soluble aromatic NOCs: o-aminophenol (oAP) and p-aminophenol (pAP) under subsaturated and supersaturated conditions using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC), respectively. Our results show that oAP and pAP are slightly hygroscopic with comparable hygroscopicities to various studied organic aerosols. The supersaturated single hygroscopicity parameter (κCCN) was measured and reported to be 0.18 ± 0.05 for oAP and 0.04 ± 0.02 for pAP, indicating that oAP is more hygroscopic than pAP despite them having the same molecular formulae. The observed disparity in hygroscopicity is attributed to the difference in functional group locations, interactions with gas phase water molecules, and the reported bulk water solubilities of the NOC. Under subsaturated conditions, both oAP and pAP aerosols showed size dependent water uptake. Both species demonstrated growth at smaller dry particle sizes, and shrinkage at larger dry particle sizes. The measured growth factor (Gf) range, at RH = 85%, for oAP was 1.60-0.74 and for pAP was 1.53-0.74 with increasing particle size. The growth and shrinkage dichotomy is attributed to morphological particle differences verified by TEM images of small and large particles. Subsequently, aerosol physicochemical properties must be considered to properly predict the droplet growth of NOC aerosols in the atmosphere.


Subject(s)
Carbon , Nitrogen , Wettability , Organic Chemicals/chemistry , Water/chemistry , Aerosols/chemistry
7.
Environ Sci Process Impacts ; 25(2): 151-164, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36004543

ABSTRACT

As scientists engage in research motivated by climate change and the impacts of pollution on air, water, and human health, we increasingly recognize the need for the scientific community to improve communication and knowledge exchange across disciplines to address pressing and outstanding research questions holistically. Our professional paths have crossed because our research activities focus on the chemical reactivity of Fe-containing minerals in air and water, and at the air-sea interface. (Photo)chemical reactions driven by Fe can take place at the surface of the particles/droplets or within the condensed phase. The extent and rates of these reactions are influenced by water content and biogeochemical activity ubiquitous in these systems. One of these reactions is the production of reactive oxygen species (ROS) that cause damage to respiratory organs. Another is that the reactivity of Fe and organics in aerosol particles alter surficial physicochemical properties that impact aerosol-radiation and aerosol-cloud interactions. Also, upon deposition, aerosol particles influence ocean biogeochemical processes because micronutrients such as Fe or toxic elements such as copper become bioavailable. We provide a perspective on these topics and future research directions on the reactivity of Fe in atmospheric aerosol systems, from sources to short- and long-term impacts at the sinks with emphasis on needs to enhance the predictive power of atmospheric and ocean models.


Subject(s)
Air Pollution , Iron , Humans , Iron/chemistry , Water , Atmosphere/chemistry , Aerosols/chemistry , Oceans and Seas
8.
Langmuir ; 38(48): 14789-14798, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36417502

ABSTRACT

Increasing levels of carbon dioxide (CO2) from human activities is affecting the ecosystem and civilization as we know it. CO2 removal from the atmosphere and emission reduction by heavy industries through carbon capture, utilization, and storage (CCUS) technologies to store or convert CO2 to useful products or fuels is a popular approach to meet net zero targets by 2050. One promising process of CO2 removal and conversion is CO2 electrochemical reduction (CO2ER) using metal and metal oxide catalysts, particularly copper-based materials. However, the current limitations of CO2ER stem from the low product selectivity of copper electrocatalysts due to existing knowledge gaps of the reaction mechanisms using surfaces that normally have native oxide layers. Here, we report systematic control studies of the surface interactions of major intermediates in CO2ER, formate, bicarbonate, and acetate, with CuO nanoparticles in situ and in real time using attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Spectra were collected as a function of concentration, pH, and time in the dark and the in absence of added electrolytes. Isotopic exchange experiments were also performed to elucidate the type of surface complexes from H/D exchange. Our results show that the organics and bicarbonate form mostly outer-sphere complexes mediated by hydrogen bonding with CuO nanoparticles with Gibbs free energy of adsorption of about -25 kJ mol-1. The desorption kinetics of the surface species indicated relatively fast and slow regions reflective of the heterogeneity of sites that affect the strength of hydrogen bonding. These results suggest that hydrogen bonding, whether intermolecular or with surface sites on CuO nanoparticles, might be playing a more important role in the CO2ER reaction mechanism than previously thought, contributing to the lack of product selectivity.


Subject(s)
Copper , Nanoparticles , Humans , Adsorption , Copper/chemistry , Spectroscopy, Fourier Transform Infrared , Carbon Dioxide/chemistry , Bicarbonates , Ecosystem , Ataxia Telangiectasia Mutated Proteins
10.
J Colloid Interface Sci ; 609: 469-481, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34887063

ABSTRACT

HYPOTHESIS: The interactions of organic molecules with mineral surfaces are influenced by several factors such as adsorbate speciation, surface atomic and electronic structure, and environmental conditions. When coupled with thermodynamic techniques, energetics from atomistic modeling can provide a molecular-level picture of which factors determine reactivity. This is paramount for evaluating the chemical processes which control the fate of these species in the environment. EXPERIMENTS: Inner-sphere adsorption of oxalate and pyrocatechol on (001), (110), and (012) α-Fe2O3 surfaces was modeled using Density Functional Theory (DFT). Unique bidentate binding modes were sampled along each facet to study how different adsorbate and surface factors govern site preference. Adsorption energetics were then calculated using a DFT + thermodynamics approach which combines DFT energies with tabulated data and Nernst-based corrective terms to incorporate different experimental parameters. FINDINGS: Instead of a universal trend, each facet displays a unique factor that dominates site preference based on either strain (001), functional groups (110), or topography (012). Adsorption energies predict favorable inner-sphere adsorption for both molecules but opposite energetic trends with varying pH. Additionally, vibrational analysis was conducted for each system and compared to experimental IR data. The work presented here provides an effective, computational methodology to study numerous adsorption processes occurring at the surface-aqueous interface.


Subject(s)
Polyphenols , Adsorption , Density Functional Theory , Ferric Compounds , Thermodynamics
11.
Commun Chem ; 5(1): 112, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36697654

ABSTRACT

Nitrogen-containing organic carbon (NOC) in atmospheric particles is an important class of brown carbon (BrC). Redox active NOC like aminophenols received little attention in their ability to form BrC. Here we show that iron can catalyze dark oxidative oligomerization of o- and p-aminophenols under simulated aerosol and cloud conditions (pH 1-7, and ionic strength 0.01-1 M). Homogeneous aqueous phase reactions were conducted using soluble Fe(III), where particle growth/agglomeration were monitored using dynamic light scattering. Mass yield experiments of insoluble soot-like dark brown to black particles were as high as 40%. Hygroscopicity growth factors (κ) of these insoluble products under sub- and super-saturated conditions ranged from 0.4-0.6, higher than that of levoglucosan, a prominent proxy for biomass burning organic aerosol (BBOA). Soluble products analyzed using chromatography and mass spectrometry revealed the formation of ring coupling products of o- and p-aminophenols and their primary oxidation products. Heterogeneous reactions of aminophenol were also conducted using Arizona Test Dust (AZTD) under simulated aging conditions, and showed clear changes to optical properties, morphology, mixing state, and chemical composition. These results highlight the important role of iron redox chemistry in BrC formation under atmospherically relevant conditions.

12.
J Hazard Mater ; 413: 125445, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33930965

ABSTRACT

Preliminary analyses of satellite measurements from around the world showed drops in nitrogen dioxide (NO2) coinciding with lockdowns due to the COVID-19 pandemic. Several studies found that these drops correlated with local decreases in transportation and/or industry. None of these studies, however, has rigorously quantified the statistical significance of these drops relative to natural meteorological variability and other factors that influence pollutant levels during similar time periods in previous years. Here, we develop a novel statistical protocol that accounts for seasonal variability, transboundary influences, and new factors such as COVID-19 restrictions in explaining trends in several pollutant levels at 16 ground-based measurement sites in Southern Ontario, Canada. We find statistically significant and temporary drops in NO2 (11 out 16 sites) and CO (all 4 sites) in April-December 2020, with pollutant levels 20% lower than in the previous three years. Fewer sites (2-3 out of 16) experienced statistically significant drops in O3 and PM2.5. The statistical significance testing framework developed here is the first of its kind applied to air quality data. It highlights the benefit of a rigorous assessment of statistical significance, should analyses of pollutant levels post COVID-19 lockdowns be used to inform policy decisions.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , Ontario , Pandemics , Particulate Matter/analysis , SARS-CoV-2
14.
Environ Sci Technol ; 55(1): 209-219, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33290060

ABSTRACT

Iron-driven secondary brown carbon formation reactions from water-soluble organics in cloud droplets and aerosols create insoluble and soluble products of emerging atmospheric importance. This work shows, for the first time, results on dark iron-catalyzed polymerization of catechol forming insoluble black polycatechol particles and colored water-soluble oligomers under conditions characteristic of viscous multicomponent aerosol systems with relatively high ionic strength (I = 1-12 m) and acidic pH (∼2). These systems contain ammonium sulfate (AS)/nitrate (AN) and C3-C5 dicarboxylic acids, namely, malonic, malic, succinic, and glutaric acids. Using dynamic light scattering (DLS) and ultra high pressure liquid chromatography-mass spectrometry (UHPLC-MS), we show results on the rate of particle growth/agglomeration and identity of soluble oligomeric reaction products. We found that increasing I above 1 m and adding diacids with oxygen-to-carbon molar ratio (O:C > 1) significantly reduced the rate of polycatechol formation/aggregation by a factor of 1.3 ± 0.4 in AS solution in the first 60 min of reaction time. Using AN, rates were too slow to be quantified using DLS, but particles formed after 24 h reaction time. These results were explained by the relative concentration and affinity of ligands to Fe(III). We also report detectable amounts of soluble and colored oligomers in reactions with a slow rate of polycatechol formation, including organonitrogen compounds. These results highlight that brown carbon formation from iron chemistry is efficient under a wide range of aerosol physical states and chemical composition.


Subject(s)
Carbon , Iron , Aerosols , Ammonium Sulfate , Catalysis
15.
Langmuir ; 36(16): 4299-4307, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32243161

ABSTRACT

Temperature-dependent kinetic studies of the adsorption of critical pollutants onto reactive components in soils and removal technologies provide invaluable rate information and mechanistic insight. Using attenuated total internal reflection Fourier transform infrared spectroscopy, we collected in situ spectra as a function of time, concentration, and temperature in the range of 5-50 °C (278-323 K) for the adsorption of arsenate (iAs) and dimethylarsinate (DMA) on hematite nanoparticles at pH 7. These experimental data were modeled with density functional theory (DFT) calculations on the energy barriers between surface complexes. The Langmuir adsorption kinetic model was used to extract values of the fast (<5 min) and slow (6-10 min) observed adsorption rate, initial rate constants of adsorption and desorption, Arrhenius parameters, effective activation energies (ΔEa), and pre-exponential factors (A). The trend in the kinetic parameters correlated with the type of surface complexes that iAs and DMA form, which are mostly bidentate binuclear compared to a mix of outer sphere and monodentate, respectively. The observed initial adsorption rates were found to be more sensitive to changes in the aqueous concentration of the arsenicals than slow rates. On average, iAs adsorbs 2.5× faster and desorbs 4× slower than dimethylarsinate (DMA). The ΔEa and A values for the adsorption of iAs bidentate complexes are statistically higher than those extracted for outer-sphere DMA by a factor of 3. The DFT results on adsorption energies and ΔEa barriers are consistent with the experimental data and provide a mechanistic explanation for the low ΔEa values observed. The presence of defect sites with under-coordinated Fe atoms or exchangeable surface water (i.e., Fe-OH2 groups) lowers activation barriers of adsorption. These results suggest that increasing organic substitutions on arsenate at the expense of As-O bonds decreases the effective energy barrier for complex formation and lowers the number of collisional orientations that result in binding to the hematite surface.

16.
Environ Sci Technol ; 53(12): 6708-6717, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31034222

ABSTRACT

Oxalate and sulfate are ubiquitous components of ambient aerosols with a high complexation affinity to iron. However, their effect on iron-driven secondary brown carbon formation in solution from soluble aromatic and aliphatic reagents was not studied. We report masses and hydrodynamic particle sizes of insoluble particles formed from the dark aqueous phase reaction of catechol, guaiacol, fumaric, and muconic acids with Fe(III) in the presence of oxalate or sulfate. Results show that oxalate decreases particle yield in solution from the reaction of Fe(III), with a stronger effect for guaiacol than catechol. For both compounds, the addition of sulfate results in the formation of more polydisperse (0.1-5 µm) and heavier particles than those from control experiments. Reactions with fumaric and muconic acids show that oxalate (not sulfate) and pH are determining factors in the efficiency of particle formation in solution. Polymerization reactions occur readily in the presence of sulfate in solution producing particles with iron-coordinated and/or pore-trapped sulfate anions. The addition of oxalate to the reactions of Fe(III) with all organics, except guaiacol, produced fewer and larger polymeric particles (>0.5 µm). These results imply that even in the presence of competing ligands, the formation of insoluble and colored particles from soluble organic precursors still dominates over the formation of soluble iron complexes.


Subject(s)
Carbon , Iron , Catalysis , Ferric Compounds , Oxalates , Sulfates
17.
ACS Omega ; 3(11): 15519-15529, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458208

ABSTRACT

Hygroscopic properties and chemical reactivity of secondary organic aerosols (SOA) influence their overall contribution to the indirect effect on the climate. In this study, we investigate the hygroscopic properties of organic and organometallic polymeric particles, namely polycatechol, polyguaiacol, Fe-polyfumarte, and Fe-polymuconate. These particles efficiently form in iron-catalyzed reactions with aromatic and aliphatic dicarboxylic acid compounds detected in field-collected SOA. The structure of surface water was studied using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and the uptake of gas water was quantified using quartz crystal microbalance (QCM) as a function of relative humidity. Spectroscopic data show that water bonding with organic functional groups acting as hydrogen bond acceptors causes shifts in their vibrational modes. Analysis of the hydroxyl group stretching region revealed weak and strong hydrogen bonding networks that suggest cluster formation reflecting water-water and water-organics interactions, respectively. A modified Type II multilayer Brunauer-Emmett-Teller adsorption model described the adsorption isotherm on the nonporous materials, polycatechol, polyguaiacol, and Fe-polymuconate. However, water adsorption on porous Fe-polyfumarate was best described using a Type V adsorption model, namely the Langmuir-Sips model that accounts for condensation in pores. The data revealed that organometallic polymers are more hygroscopic than organic polymers. The implications of these investigations are discussed in the context of the chemical reactivity of these particles relative to known SOA.

18.
Environ Sci Technol ; 51(17): 9700-9708, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28753002

ABSTRACT

The role of transition metals in the formation and aging of secondary organic aerosol (SOA) from aliphatic and aromatic precursors in heterogeneous/multiphase reactions is not well understood. The reactivity of soluble Fe(III) toward known benzene photooxidation products that include fumaric (trans-butenedioic) and muconic (trans,trans-2,4-hexadienedioic) acids was investigated. Efficient formation of brightly colored nanoparticles was observed that are mostly rod- or irregular-shaped depending on the structure of the organic precursor. The particles were characterized for their optical properties, growth rate, elemental composition, iron content, and oxidation state. Results indicate that these particles have mass absorption coefficients on the same order as black carbon and larger than that of biomass burning aerosols. The particles are also amorphous in nature and consist of polymeric chains of Fe centers complexed to carboxylate groups. The oxidation state of Fe was found to be in between Fe(III) and Fe(II) in standard compounds. The organic reactant to iron molar ratio and pH were found to affect the particle growth rate. Control experiments using maleic acid (cis-butenedioic acid) and succinic acid (butanedioic acid) produced no particles. The formation of particles reported herein could account for new pathways that lead to SOA and brown carbon formation mediated by transition metals. In addition, the multiple chemically active components in these particles (iron, organics, and acidic groups) may have an effect on their chemical reactivity (enhanced uptake of trace gases, catalysis, and production of reactive oxygen species) and their likely poor cloud/ice nucleation properties.


Subject(s)
Dicarboxylic Acids , Ferric Compounds , Nanoparticles , Polymers , Aerosols
19.
J Phys Chem A ; 121(30): 5569-5579, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28691808

ABSTRACT

The environmental fate of arsenic compounds depends on their surface interactions with geosorbents that include clays, metal oxides, and natural organic matter (NOM). While a number of batch studies reported that NOM inhibits the uptake of arsenicals, it remains unclear how different classes of organic functional groups affect their binding mechanisms. We report herein the adsorption kinetics of arsenate and dimethylarsinic acid (DMA) with hematite nanoparticles pre-exposed to three types of low molecular weight organics: citrate, oxalate, and pyrocatechol as representatives to the majority of reactive organic functional groups in NOM. These studies were conducted using attenuated total internal reflection Fourier transform infrared spectroscopy (ATR-FTIR) and flow microcalorimetry at pH 7 with an emphasis on the role that electrolytes (KCl, NaCl, and KBr) play in the adsorption process. Results show that (1) negatively charged carboxylate versus hydrophobic phenyl groups influence amounts and initial rates of arsenicals adsorption on hematite nanoparticles to varying degrees depending on the type of complexes they form, (2) the type of electrolytes affects initial adsorption rate of DMA to a greater extent than arsenate when oxalate is present on the surface, and (3) the extent of organics retention by hematite nanoparticles is influenced by the type of the desorbing agent.

20.
J Phys Chem A ; 120(46): 9270-9280, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27792343

ABSTRACT

Reaction pathway information and transition states are crucial for understanding adsorption mechanisms of pollutants, such as dimethylarsinic acid (DMA), at the liquid-solid interface. We report a detailed computational analysis of the complexes of DMA on iron (oxyhydr)oxides, including activation energies, transition states, Gibbs free energies of adsorption, Mulliken charges, charge redistribution upon adsorption, and stretching frequencies of As-O bonds for comparison with experimental spectroscopic data. Calculations were performed using density functional theory (DFT) at the B3LYP/6-311+G(d,p) level using both implicit and explicit hydration. For comparison, calculations were also performed for arsenate. Dispersion corrections were included since experimental data showed that DMA forms mostly outer-sphere complexes. Calculated electronic energies indicate that dispersion corrections are important when dealing with outer-sphere complexes, and that there is a high activation barrier of ca. 43 kJ mol-1 to transition from mono- to bidentate DMA complexes. Additionally, extending the modeled iron (oxyhydr)oxides surface to include four Fe centers and analyzing the charge distribution upon adsorption of DMA reveals that electrostatics play a role in the transition from outer-sphere to monodentate complexes. The significance of our results for the overall surface complexation mechanism of DMA and arsenate is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...