Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 93(3): 271-84, 1996.
Article in English | MEDLINE | ID: mdl-15093526

ABSTRACT

Measurements of total petroleum hydrocarbon (TPH) concentrations in 77 core samples collected in 1992 from the bottom sediments of the Arabian Gulf were used to delineate oil pollution levels and their distribution in the region. Seven chronic moderately (TPH 50-89 microg g(-1)) and heavily (TPH 266-1448 microg g(-1)) polluted areas were identified; three in the northern part of the region and four in the southern part. Oil pollution in these areas was attributed to natural oil seepage, accidental damage to pipelines, accidental spillage from tankers, the Nowruz oil slick, and tanker deballasting. Present-day intermediate (TPH 50-114 microg g(-1)) and high (TPH 200-1122 microg g(-1)) pollution levels were identified in 10 areas. Of these, three polluted areas in the northeastern corner, offshore Saudi Arabia and offshore Bahrain, Qatar and United Arab Emirates are probably directly affected by the Kuwait oil slick. A new scenario is suggested for the movement and fate of the oil slick, in which additional large oil discharges from northern sources, as well as substantial quantities of eroded oiled sediments and oil floating from heavily impacted tidal flats along the Saudi Arabian coastline, serve as sources of oil pollution. A definite relationship exists between the grain-size distribution and the TPH content of bottom sediments, with the highest TPH concentrations in the muddy sediments, suggesting that adsorption onto muds is the primary mechanism of oil pollutant accumulation in the Arabian Gulf. Total organic carbon measurements do not correlate positively with the grain-size distribution and TPH contents of the sediments, and hence cannot be used as indicators for petroleum hydrocarbon pollution in the Arabian Gulf.

2.
Environ Pollut ; 93(3): 285-301, 1996.
Article in English | MEDLINE | ID: mdl-15093527

ABSTRACT

The trace metal contents of 71 core samples collected in 1992 from the bottom sediments of the Arabian Gulf are used to determine the regional distribution of concentration and pollution levels of these substances in the region. Chronic contamination was recorded in seven locations: the northwestern area (Fe), the northeastern area (Fe, V and Ni), the north-central area (V and Ni), the central area (Fe, Pb, V and Ni), the south-central area (Cu), the eastern area (Cu) and the southeastern area (Fe, V and Ni). Present-day contamination was identified in three locations only: the north-central area (V), the central area (Pb, V and Ni) and the southeastern area (Fe, V and Ni). Diversified natural and anthropogenic inputs may have provided the sources of this contamination. The V/Ni ratios of recent marine sediments cannot be used in identifying oil spillages or in oil-sediment correlation studies. Positive correlations are found between increasing trace metal concentration and decreasing carbonate content and grain size, verifying that adsorption onto muds is the primary mechanism of trace metal concentration in marine sediments. Correlations with TOC (total organic carbon) contents indicate that organic matter is a significant concentrator only in the case of Pb and Cu. With the exception of the Fe contamination in the northwest area due to river transport, all chronic and present-day trace metal concentrations are within the permissible natural background levels in the western offshore areas, including the two areas thought to be polluted by the Kuwait oil slick, thereby supporting the idea that airborne fallout from oil fires was deposited in a limited coastal area between Kuwait and Bahrain, and verifying that the oil slick had minimal effect on the state of pollution by trace metals in the Arabian Gulf.

SELECTION OF CITATIONS
SEARCH DETAIL
...