Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 142(1): 614-622, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31829585

ABSTRACT

Voltage-sensitive fluorophores enable the direct visualization of membrane potential changes in living systems. To pair the speed and sensitivity of chemically synthesized fluorescent indicators with cell-type specific genetic methods, we here develop Rhodamine-based Voltage Reporters (RhoVR) that can be covalently tethered to genetically encoded, self-labeling enzymes. These chemical-genetic hybrids feature a photoinduced electron transfer triggered RhoVR voltage-sensitive indicator coupled to a chloroalkane HaloTag ligand through a long, water-soluble polyethylene glycol linker (RhoVR-Halo). When applied to cells, RhoVR-Halo dyes selectively and covalently bind to surface-expressed HaloTag enzyme on genetically modified cells. RhoVR-Halo dyes maintain high voltage sensitivities-up to 34% ΔF/F per 100 mV-and fast response times typical of untargeted RhoVRs, while gaining the selectivity of genetically encodable voltage indicators. We show that RhoVR-Halos can record action potentials in single trials from cultured rat hippocampal neurons and can be used in concert with green-fluorescent Ca2+ indicators like GCaMP to provide simultaneous voltage and Ca2+ imaging. In a brain slice, RhoVR-Halos provide exquisite labeling of defined cells and can be imaged using epifluorescence, confocal, or two-photon microscopy. Using high-speed epifluorescence microscopy, RhoVR-Halos provide a read-out of action potentials from labeled cortical neurons in a rat brain slice, without the need for trial averaging. These results demonstrate the potential of hybrid chemical-genetic voltage indicators to combine the optical performance of small-molecule chromophores with the inherent selectivity of genetically encodable systems, permitting imaging modalities inaccessible to either technique individually.


Subject(s)
Brain/diagnostic imaging , Rhodamines/chemistry , Action Potentials , Animals , Brain/physiology , Humans , Rats
2.
Nat Methods ; 16(8): 778-786, 2019 08.
Article in English | MEDLINE | ID: mdl-31363222

ABSTRACT

Point-scanning two-photon microscopy enables high-resolution imaging within scattering specimens such as the mammalian brain, but sequential acquisition of voxels fundamentally limits its speed. We developed a two-photon imaging technique that scans lines of excitation across a focal plane at multiple angles and computationally recovers high-resolution images, attaining voxel rates of over 1 billion Hz in structured samples. Using a static image as a prior for recording neural activity, we imaged visually evoked and spontaneous glutamate release across hundreds of dendritic spines in mice at depths over 250 µm and frame rates over 1 kHz. Dendritic glutamate transients in anesthetized mice are synchronized within spatially contiguous domains spanning tens of micrometers at frequencies ranging from 1-100 Hz. We demonstrate millisecond-resolved recordings of acetylcholine and voltage indicators, three-dimensional single-particle tracking and imaging in densely labeled cortex. Our method surpasses limits on the speed of raster-scanned imaging imposed by fluorescence lifetime.


Subject(s)
Cerebral Cortex/physiology , Glutamic Acid/metabolism , Neurons/physiology , Tomography/methods , Animals , Calcium/metabolism , Cerebral Cortex/cytology , Female , Mice , Mice, Inbred C57BL , Neurons/cytology , Photons , Rats
4.
J Am Chem Soc ; 138(29): 9085-8, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27428174

ABSTRACT

We present the design, synthesis, and application of a new family of fluorescent voltage indicators based on isomerically pure tetramethylrhodamines. These new Rhodamine Voltage Reporters, or RhoVRs, use photoinduced electron transfer (PeT) as a trigger for voltage sensing, display excitation and emission profiles in the green to orange region of the visible spectrum, demonstrate high sensitivity to membrane potential changes (up to 47% ΔF/F per 100 mV), and employ a tertiary amide derived from sarcosine, which aids in membrane localization and simultaneously simplifies the synthetic route to the voltage sensors. The most sensitive of the RhoVR dyes, RhoVR 1, features a methoxy-substituted diethylaniline donor and phenylenevinylene molecular wire at the 5'-position of the rhodamine aryl ring, exhibits the highest voltage sensitivity to date for red-shifted PeT-based voltage sensors, and is compatible with simultaneous imaging alongside green fluorescent protein-based indicators. The discoveries that sarcosine-based tertiary amides in the context of molecular-wire voltage indicators prevent dye internalization and 5'-substituted voltage indicators exhibit improved voltage sensitivity should be broadly applicable to other types of PeT-based voltage-sensitive fluorophores.


Subject(s)
Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Membrane Potentials , Rhodamines/chemistry , Rhodamines/metabolism , Electron Transport , Isomerism , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...