Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 91(17): 11004-11012, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31361950

ABSTRACT

As nonbiodegradable plastics continue to pollute our land and oceans, countries are starting to ban the use of single-use plastics. In this paper, we demonstrated the fabrication of wood-based microfluidic devices and their adaptability for single-use, point-of-care (POC) applications. These devices are made from easily sourced renewable materials for fabrication while exhibiting all the advantages of plastic devices without the problem of nonbiodegradable waste and cost. To build these wood devices, we utilized laser engraving and traditional mechanical methods and have adapted specific surface coatings to counter the wicking effect of wood. To demonstrate their versatility, wood microfluidic devices were adapted for (i) surface plasmon coupled enhancement (SPCE) of fluorescence for detection of proteins, (ii) T-/Y-geometry microfluidic channel mixers, and (iii) devices for rapid detection of microbial contamination. These provide proof of concept for the use of wooden platforms for POC applications. In this study, we measured the fluorescence intensities of recombinant green fluorescent protein (GFP) standards (ranging from 1.5-25 ng/µL) and 6XHis-G-CSF (ranging from 0.1-100 ng/µL) expressed in cell-free translation systems. All tested devices perform as well as or better than their plastic counterparts.

2.
Biotechnol Bioeng ; 116(4): 870-881, 2019 04.
Article in English | MEDLINE | ID: mdl-30450616

ABSTRACT

Biopharmaceutical separations require tremendous amounts of optimization to achieve acceptable product purity. Typically, large volumes of reagents and biological materials are needed for testing different parameters, thus adding to the expense of biopharmaceutical process development. This study demonstrates a versatile and customizable microscale column (µCol) for biopharmaceutical separations using immobilized metal affinity chromatography (IMAC) as an example application to identify key parameters. µCols have excellent precision, efficiency, and reproducibility, can accommodate any affinity, ion-exchange or size-exclusion-based resin and are compatible with any high-performance liquid chromatography (HPLC) system. µCols reduce reagent amounts, provide comparable purification performance and high-throughput, and are easy to automate compared with current conventional resin columns. We provide a detailed description of the fabrication methods, resin packing methods, and µCol validation experiments using a conventional HPLC system. Finite element modeling using COMSOL Multiphysics was used to validate the experimental performance of the µCols. In this study, µCols were used for improving the purification achieved for granulocyte colony stimulating factor (G-CSF) expressed using a cell-free CHO in vitro translation (IVT) system and were compared to a conventional 1 ml IMAC column. Experimental data revealed comparable purity with a 10-fold reduction in the amount of buffer, resin, and purification time for the µCols compared with conventional columns for similar protein yields.


Subject(s)
Chromatography, Affinity/instrumentation , Chromatography, High Pressure Liquid/instrumentation , Granulocyte Colony-Stimulating Factor/isolation & purification , Algorithms , Animals , CHO Cells , Chromatography, Affinity/economics , Chromatography, High Pressure Liquid/economics , Cricetulus , Equipment Design
3.
Nat Biomed Eng ; 2(9): 675-686, 2018 09.
Article in English | MEDLINE | ID: mdl-31015674

ABSTRACT

Manufacturing technologies for biologics rely on large, centralized, good-manufacturing-practice (GMP) production facilities and on a cumbersome product-distribution network. Here, we report the development of an automated and portable medicines-on-demand device that enables consistent, small-scale GMP manufacturing of therapeutic-grade biologics on a timescale of hours. The device couples the in vitro translation of target proteins from ribosomal DNA, using extracts from reconstituted lyophilized Chinese hamster ovary cells, with the continuous purification of the proteins. We used the device to reproducibly manufacture His-tagged granulocyte-colony stimulating factor, erythropoietin, glucose-binding protein and diphtheria toxoid DT5. Medicines-on-demand technology may enable the rapid manufacturing of biologics at the point of care.


Subject(s)
Biological Products/chemistry , Proteins/chemistry , Animals , CHO Cells , Cell Line , Cricetulus , DNA, Ribosomal/chemistry , Erythropoietin/chemistry , Granulocyte Colony-Stimulating Factor/chemistry , Humans , Point-of-Care Systems
4.
Methods Mol Biol ; 1571: 287-299, 2017.
Article in English | MEDLINE | ID: mdl-28281263

ABSTRACT

A portable kinetics fluorometer is developed to detect viable cells which may be contaminating various samples. The portable device acts as a single-excitation, single-emission photometer that continuously measures fluorescence intensity of an indicator dye and plots it. The slope of the plot depends on the number of colony forming units per milliliter. The device uses resazurin as the indicator dye. Viable cells reduce resazurin to resorufin, which is more fluorescent. Photodiode is used to detect fluorescence change. The photodiode generated current proportional to the intensity of the light that reached it, and an op-amp is used in a transimpedance differential configuration to ensure amplification of the photodiode's signal. A microfluidic chip is designed specifically for the device. It acts as a fully enclosed cuvette, which enhances the resazurin reduction rate. In tests, the E. coli-containing media are injected into the microfluidic chip and the device is able to detect the presence of E. coli in LB media based on the fluorescence change that occurred in the indicator dye. The device provides fast, accurate, and inexpensive means to optical detection of the presence of viable cells and could be used in the field in place of more complex methods, i.e., loop-meditated isothermal amplification of DNA (LAMP) to detect bacteria in pharmaceutical samples (Jimenez et al., J Microbiol Methods 41(3):259-265, 2000) or measuring the intrinsic fluorescence of the bacterial or yeast chromophores (Estes et al., Biosens Bioelectron 18(5):511-519, 2003).


Subject(s)
Microbiological Techniques/instrumentation , Microbiological Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Microfluidics/instrumentation , Microfluidics/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Point-of-Care Systems , Sensitivity and Specificity , Spectrometry, Fluorescence/methods , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...