Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(3): 4970-4984, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38112875

ABSTRACT

There is a worldwide concern about the presence of persistent organic pollutants (POPs) in the environment because of their toxicity, bioaccumulation, and resistance to degradation. Various conventional monitoring techniques have been used to assess their presence in diverse environmental compartments. Most currently available methods, however, have limitations with regards to long-term monitoring. In the present work, juvenile Cornu aspersum (O. F. Müller, 1774) snails were tested in field microcosms as biomonitors for two major classes of organic pollutants, namely, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The study assessed their deployment in one suburban, one rural, and two industrial sites over an 18-week period and monitored for temporal variations of 16 PAHs and 22 PCBs. Sampling was conducted once every 3 weeks. Targeted pollutants were extracted from the caged snails using the QuEChERS extraction procedure and subsequently analyzed using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). The results showed that the bioaccumulation of specific pollutants was site dependent; significantly higher levels of PCBs were observed at the industrial sites as compared to the suburban and rural ones. PAHs were bioaccumulated by the snails via ingestion of air and soil whereas PCBs were mainly bioaccumulated via soil contact and ingestion. The findings of this study indicate that C. aspersum is a reliable model organism for the biomonitoring of organic pollutants in air and soil compartments and can be used as part of an integrated environmental assessment.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Animals , Polychlorinated Biphenyls/analysis , Sentinel Species/metabolism , Biological Monitoring , Tandem Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , Environmental Pollutants/analysis , Soil/chemistry , Snails/metabolism
2.
Environ Sci Pollut Res Int ; 30(1): 798-810, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35906518

ABSTRACT

Extensive research to date has focused on the coagulation-flocculation and biosorption properties of the invasive Opuntia ficus-indica (L.) Mill. to remove metals from water. However, no studies have reported on the use of O. ficus-indica extract as a leaching agent to remove metals from contaminated soil. In the present work, a new environmentally friendly method for lead-contaminated soil remediation is evaluated. The method involves the use of cladode extract from O. ficus-indica as a soil washing agent. This new technique can serve to mitigate against the potential deterioration of soil quality and other secondary environmental impacts that result from the use of inorganic acids and/or chelating agents. Extractions from cladodes harvested during both day and night crassulacean acidic metabolism (CAM) phases were evaluated for treatment of lead contamination in three different soils including kaolinite, montmorillonite and a field-natural soil sample. Lead removal rates, which ranged from 44 to 100%, were significantly impacted by the intrinsic properties of the soils, the leachate dosage, the plant harvest phase, and the soil washing duration. Fourier-transform infrared spectroscopy (FTIR) characterization of the leachates indicated that functional groups present in the O. ficus-indica extracts played an essential role in the removal process. Results suggest that this species possesses promising potential to be used as a sustainable basis for the abatement of lead contaminated soil.


Subject(s)
Opuntia , Opuntia/chemistry , Soil , Lead , Plant Extracts , Environmental Pollution
3.
Environ Monit Assess ; 195(1): 197, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36513908

ABSTRACT

Juvenile Helix aspersa Müller exposed in field microcosms were used to assess the spatial and temporal bioaccumulation of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn at two agricultural and two industrial sites in Lebanon. The study was performed over a 12-week period where caged snails were sampled once every 3 weeks and assessed for metal bioaccumulation and partitioning between soft tissue and shells. Results showed that metal bioaccumulation by snails was site dependent, with Fe and Cd being the greatest and least accumulated metals, respectively. Significant differences between bioaccumulation in each of the matrices (soft tissue and shells) were also observed. Time-dependent bioaccumulation results showed an increasing accumulation trend at both agricultural sites, while a slight decline was observed at the end of the sampling campaign for the industrial sites. The study of the bioaccumulation factors (BAF) revealed that tested H. aspersa were macroconcentrators for Zn and Cd (BAF > 2) and deconcentrators for all other analyzed elements (BAF < 1). The high partitioning factor values obtained for Cu and Zn indicate an affinity of these two elements for the soft tissues of the snails. The results of this field study indicate that H. aspersa are well suited for active biomonitoring and could provide reliable information on metal pollution and bioavailability.


Subject(s)
Environmental Monitoring , Metals, Heavy , Animals , Bioaccumulation , Environmental Monitoring/methods , Cadmium , Lebanon , Metals , Snails , Metals, Heavy/analysis
4.
Article in English | MEDLINE | ID: mdl-36360928

ABSTRACT

Indoor environmental exposure to pesticides has become one of the major concerns that might adversely affect human health and development. People spend most of their lifetime in enclosed indoor environments where they might inhale harmful toxic chemicals, such as pesticides, dispersed either in particulate or in a gas phase. In this study, an assessment of pesticide contamination in indoor environments was conducted. The study covered nine houses during one year, starting from February 2016 and ending in February 2017, in which both air and dust samples were assessed for their potential contamination with 50 pesticides. The results showed that all the assessed houses were contaminated by several pesticides, especially with the allethrin pesticide (detection frequency (DF) = 100%). The highest pesticide contamination was detected in the spring/summer season when it reached an average of around 185 ng g-1 and 186.4 ng sampler-1 in the collected dust and air samples, respectively. The potential contamination of pyrethroid insecticides within all the targeted samples revealed by this study stresses the importance of minimizing the use of such indoor treatments as part of the efficient prevention and control of human exposure to pesticides.


Subject(s)
Air Pollution, Indoor , Pesticides , Humans , Pesticides/analysis , Environmental Monitoring/methods , Housing , Dust/analysis , Environmental Exposure/analysis , Air Pollution, Indoor/analysis
5.
Environ Sci Pollut Res Int ; 28(8): 10283-10291, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33447982

ABSTRACT

Among the various species of vegetation, conifers play an important role as a biomonitor of air pollution. The current study presents the determination of pesticides and polycyclic aromatic hydrocarbons in 15 conifer samples collected in August 2018 (summer season) from different regions in north Lebanon (Tripoli, Koura, Bcharre, and Akkar). Pollutants were extracted based on QuEChERS-SPME followed by liquid and gas chromatography-tandem mass spectrometry. Results showed that the samples collected from Bcharre region had the lowest concentration in both pesticides and polycyclic aromatic hydrocarbons with a total concentration of 50 and 66 ng g-1, while the samples collected from the regions widely known by their agriculture (Akkar, Tripoli, and Koura areas) were the most polluted with concentrations of 231 and 422 ng g-1, 192 and 370 ng g-1, and 127 and 98 ng g-1 for pesticides and polycyclic aromatic hydrocarbons respectively. This study revealed that conifers are suggested to be efficient biomonitors of contamination levels in the air.


Subject(s)
Pesticides , Pinus , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Lebanon , Pesticides/analysis , Polycyclic Aromatic Hydrocarbons/analysis
6.
J Chromatogr A ; 1621: 461006, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32156459

ABSTRACT

This paper reports an optimized multiresidue extraction strategy based on the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction procedure and on solid-phase microextraction (SPME) for the simultaneous screening of 120 pesticides, 16 polycyclic aromatic hydrocarbons, and 22 polychlorinated biphenyls from the terrestrial snail Helix aspersa. The optimized extraction method was based on QuEChERS using acetonitrile, followed by dispersive-Solid-phase extraction clean-up using primary secondary amine and octadecyl (C18) sorbents. The obtained extracts were analyzed by liquid chromatography coupled with tandem mass spectrometry and gas chromatography coupled with tandem mass spectrometry. This latest technique was preceded by a pre-concentration step using SPME with appropriate fibers. Afterwards, the method was validated for its linearity, sensitivity, recovery, and precision. Results showed high sensitivity, accuracy, and precision, with limits of detection and quantification lower than 20 ng g - 1 for most considered pollutants. Both inter and intra-day analyses revealed low relative standard deviation (%), which was lower than 20% for most targeted compounds. Moreover, the obtained regression coefficient (R2) was higher than 0.98 and the recoveries were higher than 60% for the majority of the assessed pollutants.


Subject(s)
Environmental Pollutants/analysis , Helix, Snails/chemistry , Pesticide Residues/analysis , Polychlorinated Biphenyls/analysis , Acetonitriles , Animals , Chromatography, Liquid/methods , Environmental Biomarkers , Environmental Pollutants/isolation & purification , Gas Chromatography-Mass Spectrometry/methods , Pesticide Residues/isolation & purification , Polychlorinated Biphenyls/isolation & purification , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/isolation & purification , Solid Phase Microextraction , Tandem Mass Spectrometry/methods
7.
Environ Sci Pollut Res Int ; 26(10): 9391-9408, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30715709

ABSTRACT

The continuous discharge of diverse chemical products in the environment is nowadays of great concern to the whole world as some of them persist in the environment leading to serious diseases. Several sampling techniques have been used for the characterization of this chemical pollution, although biomonitoring using natural samplers has recently become the technique of choice in this field due to its efficiency, specificity, and low cost. In fact, several living organisms known as biomonitors could accumulate the well-known persistent environmental pollutants allowing their monitoring in the environment. In this work, a review on environmental biomonitoring is presented. The main sampling techniques used for monitoring environmental pollutants are first reported, followed by an overview on well-known natural species used as passive samplers and known as biomonitors. These species include conifer needles, lichen, mosses, bees and their byproducts, and snails, and were widely used in recent research as reliable monitors for environmental pollution.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Animals , Atmosphere/chemistry , Bees/chemistry , Bryophyta/chemistry , Lichens/chemistry , Snails/chemistry
8.
Article in English | MEDLINE | ID: mdl-30199354

ABSTRACT

In order to assess the air quality in some Lebanese regions, a biomonitoring study based on honey as biomonitor candidate was conducted. For this, 18 samples of honey collected from four regions in Lebanon, were analyzed for their contamination by 16 polycyclic aromatic hydrocarbons (PAHs) and 22 polychlorinated biphenyls (PCBs). Samples were first extracted using a multi-residue extraction method based on the quick, easy, cheap, effective, rugged, and safe extraction method (QuEChERS) followed by a concentration step using Solid-phase microextraction (SPME) procedures. The extraction was then followed by chromatographic analysis by gas chromatography-ion-trap tandem mass spectrometry (GC-MS/MS). After PAHs samples assessment, different ratios of founded PAHs were calculated in order to estimate the sources of the pollution by these compounds. The obtained results showed that the four analyzed regions were contaminated with PAHs originated from both pyro and petro genic sources while none of them was found to be contaminated by any of the 22 assessed PCBs. The results of this study show that honey can be used as potential biomonitor candidate allowing the assessment of the pollution statement of a given environment.


Subject(s)
Environmental Monitoring/methods , Honey/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Air Pollution/analysis , Animals , Bees , Gas Chromatography-Mass Spectrometry/methods , Lebanon , Sentinel Surveillance , Solid Phase Microextraction , Tandem Mass Spectrometry/methods
9.
Anal Bioanal Chem ; 409(21): 5157-5169, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28681076

ABSTRACT

An optimized analytical method was developed for the simultaneous analysis of 90 pesticides, 16 polycyclic aromatic hydrocarbons, and 22 polychlorinated biphenyls. The method was based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction using acetonitrile followed by a dispersive solid-phase extraction cleanup using primary-secondary amine and octadecyl (C18). The extract obtained was concentrated by evaporation and then reconstituted with acetonitrile to prepare it for chromatographic analysis by liquid chromatography-triple-quadrupole tandem mass spectrometry and gas chromatography-ion-trap tandem mass spectrometry, which was preceded by a preconcentration step using solid-phase microextraction with appropriate fibers. The combination of the two extraction steps ensured efficient extract cleanup. The use of the two analytical instruments allowed the analysis of a large number of pollutants with a high reliability rate. The method developed was validated for linearity, which was studied with use of matrix-matched calibration curves in the concentration range between 10 and 3000 ng g-1. The correlation coefficient (R 2) obtained was higher than 0.98 for most of the target compounds, with a relative standard deviation lower than 20% for repeatability and reproducibility. The limits of detection and quantification were lower than 20 and 60 ng g-1 respectively for the compounds analyzed, and the recoveries were between 60% and 103% for most compounds. Finally, the method was tested for its efficiency on real samples by the analysis of three honey samples in which seven pesticides and nine polycyclic aromatic hydrocarbons were determined. Graphical Abstract ᅟ.


Subject(s)
Honey/analysis , Pesticide Residues/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Microextraction/methods , Chromatography, Liquid/methods , Limit of Detection , Reproducibility of Results , Tandem Mass Spectrometry/methods
10.
J Chromatogr Sci ; 55(4): 429-435, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27999077

ABSTRACT

A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides.


Subject(s)
Chromatography, High Pressure Liquid/methods , Dimethyldithiocarbamate/analysis , Fungicides, Industrial/analysis , Spectrophotometry, Atomic/methods , Vegetables/chemistry , Dimethyldithiocarbamate/chemistry , Fungicides, Industrial/chemistry , Limit of Detection , Reproducibility of Results
11.
Chemosphere ; 168: 1411-1421, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27916264

ABSTRACT

The continuous emission of polluting chemicals into the atmosphere requires the implementation of monitoring of ambient air quality. The use of vegetation for environmental monitoring can be considered as a simple monitoring technique by providing a cheap and accessible matrix. In this study, needles of two conifers (Pinus nigra and Cedrus atlantica), were used for the consecutive biomonitoring of multipollutants such as pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons (PAHs) in an urban area in Strasbourg (France). The extraction was performed by accelerated solvent extraction, solid-phase extraction, and solid-phase microextraction and was followed by gas chromatography coupled to tandem mass spectrometry and liquid chromatography coupled to tandem mass spectrometry analyses. The results obtained for conifer samples collected in 5 successive weeks (April 09-May 07, 2015) show a similar variation of the different types of pollutants. A pollution peak was observed during the second week of analysis, and the concentration of all pollutants then decreased to complete disappearance at the end of the sampling period. PAHs were the most concentrated with a total concentration of about 35.87 ng g-1, and naphthalene was, among these pollutants, the most concentrated with a total concentration of about 15.1 ng g-1. The analysis of meteorological data during this period suggests that the results correlated with climatic conditions that widely vary during this period of the year. The results show that the concentration peak was obtained when no precipitation was detected.


Subject(s)
Air Pollutants/analysis , Cedrus , Pinus , Plant Leaves/chemistry , Air Pollution/analysis , Cities , Environmental Monitoring/methods , France , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Extraction
12.
J Environ Sci Health B ; 50(11): 788-96, 2015.
Article in English | MEDLINE | ID: mdl-26357889

ABSTRACT

Pesticides are a real concern for the society as their use has become critical, leading sometimes to their accumulation as residues in fruits and vegetables. After examining the pesticides sold in Northern Lebanon, this study is focused on the analysis and identification of pesticides residues in fruits and vegetables that are harvested in this region and treated with the locally sold pesticides. Results show: first, (i) a use of Zineb by the name of another pesticide Micronized Sulfur to avoid prosecution; (ii) a significant presence of Metalaxyl in lemons and oranges; (iii) a significant presence of Trifluralin in strawberries; and (iv) a significant presence of Zineb in lemons and tomatoes. Second, with the use of hemolytic tests on human blood results show: (i) a critical concentration and a significant hemolytic effect of some pesticides used in Lebanon; and (ii) an absence of hemolytic effect in the collected fractions of the different analyzed fruit extracts containing pesticides. Finally, this work is the first step for pesticides' analysis in vegetables and fruits in Lebanon, initiating a wider analytical study in order to control and examine the use of pesticides which, according to our results, could have an adverse effect on human health over a long term.


Subject(s)
Food Contamination/analysis , Fruit/chemistry , Hemolytic Agents/toxicity , Pesticide Residues/analysis , Pesticides/toxicity , Vegetables/chemistry , Cells, Cultured , Citrus , Erythrocytes/drug effects , Food Analysis/methods , Humans , Lebanon , Pesticides/analysis , Plant Extracts/chemistry , Plant Extracts/toxicity , Spectrometry, Mass, Electrospray Ionization/methods , Trifluralin/analysis , Zineb/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...