Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(8): e18862, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576309

ABSTRACT

Jordan is renowned for having limited water resources. The demand for water will increasing rapidly as the country's population grows and the number of refugees increases. In order to maintain the highest water quality for consumers, the Ministry of Water and Irrigation and other governmental agencies are striving to manage Jordan's water resources through continuous monitoring. The main objective was to evaluate the drinking water quality at storage mixing tanks at Al-Karak province, besides, assessing its suitability for safe consumption. The investigation scheme was to monitor Al-Karak's drinking water system for three successive months. The fourteen principal storage tanks for the water distribution system in the area of investigation were sampled. The pH, electrical conductivity (EC), major cations, major anions, total dissolved solids (TDS), total hardness (TH), turbidity, total alkalinity (TA), and heavy metals were measured. The scaling and originality of the dissolved salt elements in the collected water samples and geochemical processes were examined using Piper and Durov diagrams. The indices used in all samples over the period of investigation, are Langelier Saturation Index (LSI), Ryznar Stability Index (RSI), Aggressive Index (AI), Puckorius Scaling Index (PSI), and Water Quality Index (WQI). The results showed that scale development is high in all storage tanks, as the water is calcium carbonate supersaturated, evident from LSI values that ranges 0.5-2. According to the range of RSI values (5.91-6.6), all water tanks are resistant to corrosion. Throughout the period of study (October-December), the estimated WQIs of all samples upon average were found to be less than 50, indicating excellent water quality. Finally, the collected water samples are analyzed and found to be within the acceptable levels of Jordan's drinking water standards.

2.
Toxics ; 10(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36355935

ABSTRACT

The accumulation of polyaromatic hydrocarbons in plants is considered one of the most serious threats faced by mankind because of their persistence in the environment and their carcinogenic and teratogenic effect on human health. The concentrations of sixteen priority polycyclic aromatic hydrocarbons (16 PAHs) were determined in four types of edible vegetables (tomatoes, zucchini, eggplants, and cucumbers), irrigation water, and agriculture soil, where samples were collected from the Jordan Valley, Jordan. The mean total concentration of 16 PAHs (∑16PAHs) ranged from 10.649 to 21.774 µg kg−1 in vegetables, 28.72 µg kg−1 in soil, and 0.218 µg L−1 in the water samples. The tomato samples posed the highest ∑16PAH concentration level in the vegetables, whereas the zucchini samples had the lowest. Generally, the PAHs with a high molecular weight and four or more benzene rings prevailed among the studied samples. The diagnostic ratios and the principal component analysis (PCA) revealed that the PAH contamination sources in soil and vegetables mainly originated from a pyrogenic origin, traffic emission sources, and biomass combustion. The bioconcentration factors (BCF) for ∑16PAHs have been observed in the order of tomatoes > cucumbers and eggplants > zucchini. A potential cancer risk related to lifetime consumption was revealed based on calculating the incremental lifetime cancer risk of PAHs (ILCR). Therefore, sustainable agricultural practices and avoiding biomass combusting would greatly help in minimizing the potential health risk from dietary exposure to PAHs.

SELECTION OF CITATIONS
SEARCH DETAIL
...