Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 179: 108874, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39013343

ABSTRACT

Smart healthcare has advanced the medical industry with the integration of data-driven approaches. Artificial intelligence and machine learning provided remarkable progress, but there is a lack of transparency and interpretability in such applications. To overcome such limitations, explainable AI (EXAI) provided a promising result. This paper applied the EXAI for disease diagnosis in the advancement of smart healthcare. The paper combined the approach of transfer learning, vision transformer, and explainable AI and designed an ensemble approach for prediction of disease and its severity. The result is evaluated on a dataset of Alzheimer's disease. The result analysis compared the performance of transfer learning models with the ensemble model of transfer learning and vision transformer. For training, InceptionV3, VGG19, Resnet50, and Densenet121 transfer learning models were selected for ensembling with vision transformer. The result compares the performance of two models: a transfer learning (TL) model and an ensemble transfer learning (Ensemble TL) model combined with vision transformer (ViT) on ADNI dataset. For the TL model, the accuracy is 58 %, precision is 52 %, recall is 42 %, and the F1-score is 44 %. Whereas, the Ensemble TL model with ViT shows significantly improved performance i.e., 96 % of accuracy, 94 % of precision, 90 % of recall and 92 % of F1-score on ADNI dataset. This shows the efficacy of the ensemble model over transfer learning models.

2.
Sci Rep ; 14(1): 7819, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570582

ABSTRACT

Heart disease is a leading cause of mortality on a global scale. Accurately predicting cardiovascular disease poses a significant challenge within clinical data analysis. The present study introduces a prediction model that utilizes various combinations of information and employs multiple established classification approaches. The proposed technique combines the genetic algorithm (GA) and the recursive feature elimination method (RFEM) to select relevant features, thus enhancing the model's robustness. Techniques like the under sampling clustering oversampling method (USCOM) address the issue of data imbalance, thereby improving the model's predictive capabilities. The classification challenge employs a multilayer deep convolutional neural network (MLDCNN), trained using the adaptive elephant herd optimization method (AEHOM). The proposed machine learning-based heart disease prediction method (ML-HDPM) demonstrates outstanding performance across various crucial evaluation parameters, as indicated by its comprehensive assessment. During the training process, the ML-HDPM model exhibits a high level of performance, achieving an accuracy rate of 95.5% and a precision rate of 94.8%. The system's sensitivity (recall) performs with a high accuracy rate of 96.2%, while the F-score highlights its well-balanced performance, measuring 91.5%. It is worth noting that the specificity of ML-HDPM is recorded at a remarkable 89.7%. The findings underscore the potential of ML-HDPM to transform the prediction of heart disease and aid healthcare practitioners in providing precise diagnoses, exerting a substantial influence on patient care outcomes.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Proboscidea Mammal , Humans , Animals , Heart Diseases/diagnosis , Cardiovascular Diseases/diagnosis , Cluster Analysis , Data Analysis , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...