Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e22103, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38045219

ABSTRACT

Cockroaches are very capable of mechanically transmitting harmful microorganisms, which is seen to be a severe hazard to the general public's health. The purpose of this study was the evaluation of cockroach bacterial contamination in various locations throughout Babylon. 300 cockroaches were caught from different wards of the hospital, restaurants, and houses. Using PBS buffer, the external surface of the cockroaches was washed to collect bacteria. Standard phenotypic methods were used to identify and classify bacteria. Afterward, the bacterial resistance to different antibiotics was investigated using the Kirby-Bauer disk diffusion susceptibility test. The 200 (66.6 %) American cockroaches including 56 (18.7 %) Blattella germanica and 44 (14.6 %) Blatta orientalis were identified. Noteworthy, 96.6 % of cockroaches were infected with different bacteria. Bacillus strains, coagulase-negative Staphylococci (CoNs), and Escherichia coli were the most frequent among the isolated bacteria. On average, the highest antibiotic resistance was detected to cefotaxime, ampicillin, cephalothin, and kanamycin. On the other hand, the isolated bacteria showed high sensitivity to gentamicin, nitrofurantoin, tetracycline, trimethoprim/sulfamethoxazole (SXT), and chloramphenicol. high antibiotic resistance in bacteria isolated from different wards of the hospital and the high potential of transmission of these bacteria by cockroaches is a serious warning for the health of society.

2.
Heliyon ; 9(11): e21799, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034807

ABSTRACT

Efficient thermal insulation materials considerably lower power consumption for heating and cooling of buildings, which in turn minimises CO2 emissions and improves indoor comfort conditions. However, the selection of suitable insulation materials is governed by several factors, such as the environmental impact, health impact, cost and durability. Additionally, the disposal of used insulation materials is a major factor that affects the selection of materials because some materials could be very toxic for humans and the environment, such as asbestos-containing materials. Therefore, there is a continuous research effort, in both industry and academia, to develop sustainable and affordable insulation materials. In this context, this work aims at utilising the packing industry wastes (cardboard) to develop an eco-friendly insulation layer, which is a biodegradable material that can be disposed of safely after use. Experimentally, wasted cardboard was collected, cleaned, and soaked in water for 24 h. Then, the wet cardboard was minced and converted into past papers, then cast in square moulds and left in a ventilated oven at 75 °C to dry before de-moulding them. The produced layers were subjected to a wide range of tests, including thermal conductivity, acoustic insulation, infrared imaging and bending resistance. The obtained results showed the developed material has a good thermal and acoustic insulation performance. Thermally, the developed material had the lowest thermal conductivity (λ) (0.039 W/m.K) compared to the studied traditional materials. Additionally, it successfully decreased the noise level from 80 to about 58 dB, which was better than the efficiency of the commercial polyisocyanurate layer. However, the bending strength of the developed material was a major drawback because the material did not resist more than 0.6 MPa compared to 2.0 MPa for the commercial polyisocyanurate and 70.0 MPa for the wood boards. Therefore, it is recommended to investigate the possibility of strengthening the new material by adding fibres or cementitious materials.

3.
Mol Biotechnol ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37768503

ABSTRACT

A monster called cancer is still one of the most challenging human problems and one of the leading causes of death in the world. Different types of treatment methods are used for cancer therapy; however, there are challenges such as high cost and harmful side effects in using these methods. Recent years have witnessed a surge in the development of therapeutic peptides for a wide range of diseases, notably cancer. Peptides are preferred over antibiotics, radiation therapy, and chemotherapy in the treatment of cancer due to a number of aspects, including flexibility, easy modification, low immunogenicity, and inexpensive cost of production. The use of therapeutic peptides in cancer treatment is a novel and intriguing strategy. These peptides provide excellent prospects for targeted drug delivery because of their high selectivity, specificity, small dimensions, good biocompatibility, and simplicity of modification. Target specificity and minimal toxicity are benefits of therapeutic peptides. Additionally, peptides can be used to design antigens or adjuvants for vaccine development. Here, types of therapeutic peptides for cancer therapy will be discussed, such as peptide-based cancer vaccines and tumor-targeting peptides (TTP) and cell-penetrating peptides (CPP).

4.
Pathol Res Pract ; 250: 154825, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37769396

ABSTRACT

Triple-negative breast cancer (TNBC) represents a challenging and aggressive form of breast cancer associated with limited treatment options and poor prognosis. Although chemotherapy is a primary therapeutic approach, drug resistance often hinders treatment success. However, the expanding knowledge of TNBC subtypes and molecular biology has paved the way for targeted therapies. Notably, exosomes (extracellular vesicles) have emerged as crucial carriers of tumorigenic factors involved in oncogenesis and drug resistance, facilitating cell-to-cell communication and offering potential as self-delivery systems. Among the cargo carried by exosomes, microRNAs (miRNAs) have gained attention due to their ability to mediate epigenetic changes in recipient cells upon transfer. Research has confirmed dysregulation of exosomal miRNAs in breast cancer cells compared to healthy cells, establishing them as promising biomarkers for cancer diagnosis and prognosis. In this comprehensive review, we summarize the latest research findings that underscore the diagnostic and prognostic significance of exosomal miRNAs in TNBC treatment. Furthermore, we explore contemporary therapeutic approaches utilizing these exosomal miRNAs for the benefit of TNBC patients, shedding light on potential breakthroughs in TNBC management.

5.
Pathol Res Pract ; 248: 154631, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37393667

ABSTRACT

MicroRNA-126 (miR-126) has become a key player in the biology of cancer, playing a variety of functions in carcinogenesis and cancer development. The diagnostic and prognostic potential of miR-126 in diverse cancer types is summarized in this thorough analysis, with an emphasis on its role in tumor angiogenesis, invasion, metastasis, cell proliferation, apoptosis, and treatment resistance. MiR-126 dysregulation is linked to a higher risk of developing cancer and a worse prognosis. Notably, miR-126 affects tumor vascularization and development by targeting vascular endothelial growth factor-A (VEGF-A). Through its impact on genes involved in cell adhesion and migration, it also plays a vital part in cancer cell invasion and metastasis. Additionally, miR-126 controls drug resistance, apoptosis, and cell proliferation, which affects cancer cell survival and treatment response. It may be possible to develop innovative therapeutic approaches to stop tumor angiogenesis, invasion, and metastasis, as well as combat drug resistance by focusing on miR-126 or its downstream effectors. The versatility of miR-126's functions highlights the role that it plays in cancer biology. To understand the processes behind miR-126 dysregulation, pinpoint precise targets, and create efficient therapies, more investigation is required. Utilizing miR-126's therapeutic potential might have a significant influence on cancer treatment plans and patient outcomes.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Vascular Endothelial Growth Factor A/metabolism , Cell Line, Tumor , Cell Movement/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Carcinogenesis/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic/genetics
6.
Pathol Res Pract ; 247: 154565, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37267725

ABSTRACT

Cholangiocarcinoma, also referred to as CCA, is a highly complex epithelial malignancy that can impact various organs and regions of the body, including the perihilar, intrahepatic, and distal organs. This cancer is characterized by the malignant growth of the epithelial lining in the bile ducts, which spans the entire biliary tree and is accountable for disease progression. The current state of affairs concerning CCA is concerning, with poor prognoses, high recurrence rates, and dismal long-term survival rates significantly burden healthcare facilities worldwide. Studies have identified numerous signaling pathways and molecules involved in the development and progression of CCA, including microRNAs, an important class of non-coding RNAs that have the ability to modulate these cellular signaling pathways significantly. In addition, microRNAs may serve as an innovative target for developing novel therapeutic approaches for CCA. In this review, we explore the underlying mechanisms and signaling pathways implicated in the initiation and progression of CCA, focusing on the future direction of utilizing microRNAs as a promising treatment option for this challenging malignancy.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , MicroRNAs , Humans , MicroRNAs/genetics , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Bile Ducts
SELECTION OF CITATIONS
SEARCH DETAIL
...