Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Phytochemistry ; 72(1): 37-48, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21111431

ABSTRACT

Indole-3-acetaldoxime (IAOx) is a branch point compound of tryptophan (Trp) metabolism in glucosinolate-producing species such as Arabidopsis, serving as a precursor to indole-glucosinolates (IGs), the defense compound camalexin, indole-3-acetonitrile (IAN) and indole-3-acetic acid (IAA). We synthesized [(2)H(5)] and [(13)C(10)(15)N(2)]IAOx and [(13)C(6)], [(2)H(5)] and [2',2'-(2)H(2)]IAN in order to quantify endogenous IAOx and IAN in Arabidopsis and tobacco, a non-IG producing species. We found that side chain-labeled [2',2'-(2)H(2)]IAN overestimated the amount of IAN by 2-fold compared to when [(2)H(5)]IAN was used as internal standard, presumably due to protium-deuterium exchange within the internal standard during extraction of plant tissue. We also determined that [(13)C(1)]IAN underestimated the amount of IAN when the ratio of [(13)C(1)]IAN standard to endogenous IAN was greater than five to one, whereas either [(2)H(5)]IAN or [(13)C(6)]IAN showed a linear relationship with endogenous IAN over a broader range of concentrations. Transgenic tobacco vector control lines did not have detectable levels of IAOx or IAN (limit of detection∼100 pg/gfr.wt), while lines expressing either the IAOx-producing CYP79B2 or CYP79B3 genes from Arabidopsis under CaMV 35S promoter control accumulated IAOx in the range of 1-9 µg/gfr.wt. IAN levels in these lines ranged from 0.6 to 6.7 µg/gfr.wt, and IAA levels were ∼9-14-fold above levels in control lines. An Arabidopsis line expressing the same CYP79B2 overexpression construct accumulated IAOx in two of three lines measured (∼200 and 400 ng/gfr.wt) and accumulated IAN in all three lines. IAN is proposed to be a metabolite of IAOx or an enzymatic breakdown product of IGs induced upon tissue damage. Since tobacco does not produce detectable IGs, the tobacco data are consistent with IAN being a metabolite of IAOx. IAOx and IAN were also examined in the Arabidopsis activation tagged yucca mutant, and no accumulation of IAOx was found above the limits of detection but accumulation of IAN (3-fold above wt) occurred. The latter was surprising in light of recent reports that rule out IAOx and IAN as intermediates in YUCCA-mediated IAA synthesis.


Subject(s)
Arabidopsis/metabolism , Glucosinolates/metabolism , Indoleacetic Acids/metabolism , Nicotiana/metabolism , Plants, Genetically Modified , Tryptophan/metabolism , Arabidopsis/enzymology , Indoleacetic Acids/analysis , Indoles/analysis , Indoles/metabolism , Molecular Structure , Oximes/analysis , Oximes/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/metabolism , Nicotiana/genetics
2.
J Chromatogr A ; 1217(41): 6388-93, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20817165

ABSTRACT

Verbena rigida L., Verbena tenera Spreng. and Verbena venosa L. were investigated for their flavonoid content. Analysis was carried out by high-performance liquid chromatography coupled to diode array UV detection (LC-UV), using different techniques, also using post-column addition of shift reagents, afforded precise structural information about the position of the free hydroxyl groups in the flavonoid nucleus. LC-MS using atmospheric pressure chemical ionization (APCI) in the positive mode provided the molecular weight, the number of hydroxyl groups, the number of sugars and an idea about the substitution pattern of the flavonoid. On-line UV and MS data demonstrated the presence of orientin, vitexin, isovitexin, luteolin, luteolin 7-O-glucoside, apigenin 7-O-glucoside in addition to luteolin, chryseriol and apigenin aglycones in the three Verbena species with different concentrations. Quantitative determination of flavonoid content revealed the presence of 69.84 mg/g dry sample, 88.26 mg/g dry sample and 85.82 mg/g dry sample total flavonoid compounds in V. rigida L., V. tenera Spreng. and V. venosa L., respectively. The method developed for identification is useful for further chromatographic fingerprinting of plant flavonoids.


Subject(s)
Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Plant Extracts/chemistry , Verbena/chemistry , Acetonitriles , Egypt , Flavonoids/chemistry , Flavonoids/classification , Mass Spectrometry/methods , Spectrophotometry, Ultraviolet
3.
Anal Biochem ; 372(2): 177-88, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17889819

ABSTRACT

To investigate novel pathways involved in auxin biosynthesis, transport, metabolism, and response, we have developed a high-throughput screen for indole-3-acetic acid (IAA) levels. Historically, the quantitative analysis of IAA has been a cumbersome and time-consuming process that does not lend itself to the screening of large numbers of samples. The method described here can be performed with or without an automated liquid handler and involves purification solely by solid-phase extraction in a 96-well format, allowing the analysis of up to 96 samples per day. In preparation for quantitative analysis by selected ion monitoring-gas chromatography-mass spectrometry, the carboxylic acid moiety of IAA is derivatized by methylation. The derivatization of the IAA described here was also done in a 96-well format in which up to 96 samples can be methylated at once, minimizing the handling of the toxic reagent, diazomethane. To this end, we have designed a custom diazomethane generator that can safely withstand high flow and accommodate larger volumes. The method for IAA analysis is robust and accurate over a range of plant tissue weights and can be used to screen for and quantify other indolic auxins and compounds including indole-3-butyric acid, 4-chloro-indole-3-acetic acid, and indole-3-propionic acid.


Subject(s)
Indoleacetic Acids/analysis , Plants/chemistry , Arabidopsis/chemistry , Chromatography, High Pressure Liquid , Methylation , Phosphatidylethanolamines/analysis , Plant Extracts/analysis , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL