Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 21: 2395-2397, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30547064

ABSTRACT

The data set presented here is associated with the article "Intracellular calcium and NF-kB regulate hypoxia-induced leptin, VEGF, IL-6 and adiponectin secretion in human adipocytes" (Al-Anazi et al., 2018). Data illustrate hypoxia-induced VEGF and leptin expression in human adipocytes treated with the calcium chelator BAPTA-AM (1 µM). It also shows NF-κB p65 induced expression by hypoxia. Preadipocytes were differentiated for 14 days and then subjected to 0.5-1.5% oxygen in the presence and absence of BAPTA-AM or the NF-κB inhibitor SN50 for 48 h prior to RNA isolation and PCR analysis.

2.
Life Sci ; 212: 275-284, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30308181

ABSTRACT

AIMS: Hypoxia-induced adipokine release has been attributed mainly to HIF-1α. Here we investigate the role of intracellular calcium and NF-kB in the hypoxia-dependent release of leptin, VEGF, IL-6 and the hypoxia-induced inhibition of adiponectin release in human adipocytes. MAIN METHODS: We used intracellular calcium imaging to compare calcium status in preadipocytes and in adipocytes. We subjected both cell types to hypoxic conditions and measured the release of adipokines induced by hypoxia in the presence and absence of HIF-1α inhibitor YC-1, NF-κB inhibitor SN50 and intracellular calcium chelator BAPTA-AM. KEY FINDINGS: We demonstrate reduced intracellular calcium oscillations and increased oxidative stress as the cells transitioned from preadipocytes to adipocytes. We show that differentiation of preadipocytes to adipocytes is associated with distinct morphological changes in the mitochondria. We also show that hypoxia-induced secretion of leptin, VEGF, IL-6 and hypoxia-induced inhibition of adiponectin secretion are independent of HIF-1α expression. The hypoxia-induced leptin, VEGF and IL-6 release are [Ca++]i dependent whereas adiponectin is NF-kB dependent. SIGNIFICANCE: Our work suggests a major role for [Ca++]i in preadipocyte differentiation to adipocytes and that changes in mitochondrial morphology in the adipocytes might underlie the reduced calcium oscillations observed in the adipocytes. It also demonstrates that multiple signaling pathways are associated with the hypoxia-induced adipokine secretion.


Subject(s)
Adipocytes/metabolism , Adiponectin/metabolism , Calcium/pharmacology , Hypoxia/physiopathology , Interleukin-6/metabolism , Leptin/metabolism , NF-kappa B/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Adipocytes/cytology , Adipocytes/drug effects , Cell Differentiation , Gene Expression Regulation/drug effects , Humans , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...