Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Tissue Eng Regen Med ; 12(3): 715-726, 2018 03.
Article in English | MEDLINE | ID: mdl-28635177

ABSTRACT

Bone engineering opens the possibility to grow large amounts of tissue products by combining patient-specific cells with compliant biomaterials. Decellularized tissue matrices represent suitable biomaterials, but availability, long processing time, excessive cost, and concerns on pathogen transmission have led to the development of biomimetic synthetic alternatives. We recently fabricated calcium phosphate cement (CPC) scaffolds with variable macroporosity using a facile synthesis method with minimal manufacturing steps and demonstrated long-term biocompatibility in vitro. However, there is no knowledge on the potential use of these scaffolds for bone engineering and whether the porosity of the scaffolds affects osteogenic differentiation and tissue formation in vitro. In this study, we explored the bone engineering potential of CPC scaffolds with two different macroporosities using human mesenchymal progenitors derived from induced pluripotent stem cells (iPSC-MP) or isolated from bone marrow (BMSC). Biomimetic decellularized bone scaffolds were used as reference material in all experiments. The results demonstrate that, irrespective of their macroporosity, the CPC scaffolds tested in this study support attachment, viability, and growth of iPSC-MP and BMSC cells similarly to decellularized bone. Importantly, the tested materials sustained differentiation of the cells as evidenced by increased expression of osteogenic markers and formation of a mineralized tissue. In conclusion, the results of this study suggest that the CPC scaffolds fabricated using our method are suitable to engineer bone grafts from different cell sources and could lead to the development of safe and more affordable tissue grafts for reconstructive dentistry and orthopaedics and in vitro models for basic and applied research.


Subject(s)
Bone Cements/pharmacology , Bone Transplantation , Calcium Phosphates/pharmacology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Alkaline Phosphatase/metabolism , Calcification, Physiologic/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Gene Expression Regulation/drug effects , Humans , Osteocalcin/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...