Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 10(17): 8207-8216, 2018 May 03.
Article in English | MEDLINE | ID: mdl-29682647

ABSTRACT

Doxorubicin (DOX) is commonly used to treat human malignancies, and its efficacy can be maximized by limiting the cardiac toxicity when combined with nanoparticles. Here, we reported a unique type of reversibly disulfide cross-linked micellar formulation of DOX (DOX-DCMs) for the targeted therapy of B-cell lymphoma. DOX-DCMs exhibited high drug loading capacity, optimal particle sizes (15-20 nm), outstanding stability in human plasma, and stimuli-responsive drug release profile under reductive conditions. DOX-DCMs significantly improved the pharmacokinetics of DOX, and its elimination half-life (t1/2) and area under curve (AUC) were 5.5 and 12.4 times of that of free DOX, respectively. Biodistribution studies showed that DOX-DCMs were able to preferentially accumulate in the tumor site and significantly reduce the cardiac uptake of DOX. In a xenograft model of human B-cell lymphoma, compared with the equivalent dose of free DOX and non-crosslinked counterpart, DOX-DCMs not only significantly inhibited the tumor growth and prolonged the survival rate, but also remarkably reduced DOX-associated cardiotoxicity. Furthermore, the exogenous administration of N-acetylcysteine (NAC) at 24 h further improved the therapeutic efficacy of DOX-DCMs, which provides a "proof-of-concept" for precise drug delivery on-demand, and may have great translational potential as future cancer nano-therapeutics.


Subject(s)
Antibiotics, Antineoplastic/pharmacokinetics , Doxorubicin/pharmacokinetics , Drug Delivery Systems , Lymphoma, B-Cell/drug therapy , Micelles , Animals , Cell Line, Tumor , Disulfides/chemistry , Female , Humans , Mice, Inbred BALB C , Mice, Nude , Nanoparticles , Tissue Distribution , Xenograft Model Antitumor Assays
2.
J Control Release ; 264: 169-179, 2017 Oct 28.
Article in English | MEDLINE | ID: mdl-28847739

ABSTRACT

Mortality rates for ovarian cancer have declined only slightly in the past forty years since the "War on Cancer" was declared. The current standard care of ovarian cancer is still cytoredutive surgery followed by several cycles of chemotherapy. The severe adverse effect from chemotherapy drug is a leading cause for the patients to fail in long term therapy post-surgery. New nanocarriers able to minimize the premature drug release in blood circulation while releasing drug on-demand at tumor site have profound impact on the improvement of the efficacy and toxicity profile of the chemotherapeutic drugs. Here we reported a unique type of extremely long tumor retention, multi-responsive boronate crosslinked micelles (BCM) for ovarian cancer therapy. We systemically investigated the stability of BCM in serum and plasma, and their responsiveness to acidic pH and cis-diols (such as mannitol, a safe FDA approved drug for diuresis) through particle size measurement and förster resonance energy transfer (FRET) approach. Paclitaxel (PTX) loaded BCM (BCM-PTX) exhibited higher stability than non-crosslinked micelles (NCM) in the presence of plasma or serum. BCMs possessed a longer in vivo blood circulation time when compared to NCM. Furthermore, BCM could be disassembled in an acidic pH environment or by administrating mannitol, facilitating drug release in an acidic tumor environment and triggered by exogenous stimuli after drug enrichment in tumor mass. Near infra-red fluorescence (NIRF) imaging on SKOV-3 ovarian cancer mouse model demonstrated that the NIR dye DiD encapsulated BCM could preferentially accumulate in tumor site and their tumor retention was very long with still 66% remained on 12th day post injection. DiD-NCM had similar high-level uptake in tumor with DiD-BCM within the first 3days, its accumulation, however, decreased obviously on 4th day and only 15% dye was left 12days later. In both formulations, the dye uptake in normal organs was mostly washed away within the first 24-48h. In in vivo tumor treatment study, PTX loaded BCM showed superior therapeutic efficacy than that of NCM and Taxol. The mice could tolerate 20mg/kg PTX formulated in nano-formulations, which doubled the maximum tolerated dose (MTD) of Taxol. The administration of mannitol 24h after BCM-PTX injection further improved the tumor therapeutic effect and elongated the survival time of the mice. The novel boronate-catechol crosslinked nanocarrier platform demonstrated its superior capability in targeted drug delivery, which is not only useful for ovarian cancer treatment but will also be beneficial for the therapy of many other solid tumors.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Boronic Acids/administration & dosage , Catechols/administration & dosage , Micelles , Nanoparticles/administration & dosage , Paclitaxel/administration & dosage , Animals , Antineoplastic Agents, Phytogenic/pharmacokinetics , Boronic Acids/pharmacokinetics , Catechols/pharmacokinetics , Cell Line, Tumor , Drug Delivery Systems , Female , Mice , Ovarian Neoplasms/blood , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Paclitaxel/pharmacokinetics , Tumor Burden/drug effects
3.
OMICS ; 20(12): 681-691, 2016 12.
Article in English | MEDLINE | ID: mdl-27930094

ABSTRACT

Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.


Subject(s)
Medical Oncology/methods , Neoplastic Stem Cells/metabolism , Biomarkers, Tumor/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...