Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 21: 100692, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37455818

ABSTRACT

Bone regeneration is a complex process that requires the coordination of various biological events. Developing a tissue regeneration membrane that can regulate this cascade of events is challenging. In this study, we aimed to fabricate a membrane that can enrich the damaged area with mesenchymal stem cells, improve angiogenesis, and continuously induce osteogenesis. Our approach involved creating a hierarchical polycaprolactone/gelatin (PCL/GEL) co-electrospinning membrane that incorporated substance P (SP)-loaded GEL fibers and simvastatin (SIM)-loaded PCL fibers. The membrane could initiate a burst release of SP and a slow/sustained release of SIM for over a month. In vitro experiments, including those related to angiogenesis and osteogenesis (e.g., migration, endothelial network formation, alkaline phosphatase activity, mineralization, and gene expression), clearly demonstrated the membrane's superior ability to improve cell homing, revascularization, and osteogenic differentiation. Furthermore, a series of in vivo studies, including immunofluorescence of CD29+/CD90+ double-positive cells and immunohistochemical staining for CD34 and vWF, confirmed the co-electrospinning membrane's ability to enhance MSC migration and revascularization response after five days of implantation. After one month, the Micro-CT and histological (Masson and H&E) results showed accelerated bone regeneration. Our findings suggest that a co-electrospinning membrane with time-tunable drug delivery could advance the development of tissue engineering therapeutic strategies and potentially improve patient outcomes.

2.
Front Bioeng Biotechnol ; 10: 975431, 2022.
Article in English | MEDLINE | ID: mdl-36003534

ABSTRACT

The accelerating bone healing process is still a major challenge in clinical orthopedics, especially in critical-sized bone defects. Recently, Nanofiber membranes are showing increasing attention in the biomedical field due to their good biocompatibility, mechanical stability, and the ability to work as a drug carrier to achieve localized and sustained drug delivery. Herein, a multifunction nanofiber membrane loaded with vitamin D (Vit D) and curcumin (Cur) was successfully fabricated using electrospinning technology. In addition, we innovatively modified Vit D with PEG to improve the hydrophilicity of PCL nanofibers. The vitro results of CCK-8, alkaline phosphatase (ALP) and mineralization demonstrated that the PCL/Vit D-Cur membrane had great potential for enhancing the proliferation/differentiation of osteoblasts. Moreover, the synergistic effect of Vit D-Cur loaded PCL nanofiber membrane showed a superior ability to improve the anti-inflammatory activity through M2 polarization. Furthermore, in vivo results confirmed that the defect treated with PCL/Vit D-Cur nanofiber membrane was filled with the newly formed bone after 1 month. These results indicate that the Vit D/Cur loaded membrane can be applied for potential bone regeneration therapy.

3.
Int J Nanomedicine ; 17: 17-29, 2022.
Article in English | MEDLINE | ID: mdl-35023917

ABSTRACT

BACKGROUND: Compared with the healthy condition, osteoporotic bone defects are often accompanied by poor osteogenesis and excessive reactive oxygen species (ROS), which pose serious challenges to bone augmentation and repair by normal resorbable guided bone regeneration (GBR) membrane. PURPOSE: Polaprezinc (PZ) was loaded into polycaprolactone/gelatin (PG) hybrid electrospun nanofibers to fabricate a GBR membrane with antioxidant and osteogenesis ability. METHODS: A series of physicochemical characterization were performed by scanning electron microscopy, Fourier-transform infrared spectroscopy, and water contact angle measurement. In addition to membrane degradation and PZ release detection, membranes were tested for cell viability, differentiation, and protein expression in MC3T3-E1 cells by CCK8, alkaline phosphatase activity, mineralization, and Western blotting assays. The membrane osteogenic capacity in cranial bone defects was studied by micro-CT in vivo. RESULTS: PZ was successfully doped into the PCL/GEL nanofibers to form a hydrophilic GBR membrane. The cumulative release of PZ was closely related to the membrane degradation behavior. PG/0.4%PZ membranes produced the best protective effect on cell proliferation/differentiation under oxidative stress microenvironment; however, the PG/0.8%PZ membrane was cytotoxic. Western blotting demonstrated that the PZ-loaded membrane upregulated the Nrf2/HO-1/SOD1 signaling molecules in a concentration-dependent manner. In addition, micro-CT results showed an abundant formation of new bones in the PG/0.4%PZ group compared to the PG group. CONCLUSION: PZ-loaded degradable PG membranes (especially PG/0.4%PZ) have great potential to accelerate bone regeneration in oxidative stress-related diseases.


Subject(s)
Nanofibers , Osteoporosis , Antioxidants/pharmacology , Bone Regeneration , Carnosine/analogs & derivatives , Cell Proliferation , Humans , Organometallic Compounds , Osteogenesis , Osteoporosis/drug therapy , Polyesters , Tissue Scaffolds , Zinc Compounds
4.
Mater Sci Eng C Mater Biol Appl ; 130: 112471, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34702545

ABSTRACT

Hydrogen sulfide (H2S) has been as an essential gasotransmitter and a potential therapeutic approach for several biomedical treatments such as cardiovascular disorders, hypertension, and other diseases. The endogenous and exogenous H2S also plays a crucial role in the bone anabolic process and a protective mechanism in cell signalling. In this study, we have utilized two types of polymers, polycaprolactone (PCL) and gelatin (Gel), for the fabrication of JK-2 (H2S donor) loaded nanofibrous scaffold via electrospinning process for bone healing and bone tissue engineering. Comparing the PCL/Gel and PCL/Gel-JK-2 scaffolds, the latter demonstrated enhanced cell adhesion and proliferation capabilities. Furthermore, both experimental scaffolds have been subjected to an in vivo experiment for 4 and 8 weeks in a bone-defect model of a rabbit to determine their biological responses under physiological conditions. There was an obvious increase in bone regeneration in the PCL/Gel-JK-2 group compared to the control and PCL/Gel groups. These results indicate the use of PCL/Gel scaffolds loaded with JK-2 should be considered for possible bone regeneration.


Subject(s)
Bone Regeneration , Tissue Scaffolds , Animals , Cell Adhesion , Cell Proliferation , Gelatin , Polyesters , Rabbits , Tissue Engineering
5.
Mater Sci Eng C Mater Biol Appl ; 120: 111777, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545907

ABSTRACT

In this study, multifunctional tantalum copper composite nanotubes (TaCu-NTs) were coated on titanium for enhanced bacteriostatic, angiogenic and osteogenic properties. Three coatings of Ta, TaCu1 (Ta: Cu = 4:1 at.%), and TaCu2 (Ta: Cu = 1:1 at.%) were deposited on titanium by magnetron sputtering. The bare titanium and the three coatings were subsequently anodized into four kinds of nanotubes (NT) of TNT, Ta-NT, TaCu1-NT, and TaCu2-NT, respectively. The released copper ions measured by inductively coupled plasma atomic emission spectroscopy (ICP/AES) presented that TaCu2-NT coating released the highest amount of copper ions, which led to the best bacteriostasis against Escherichia coli and Staphylococcus aureus. Potentiodynamic polarization tests clarified that Ta-NT showed the highest corrosion resistance, followed by TaCu1-NT and TaCu2-NT. TaCu2-NT showed not only the best angiogenic property in terms of cell migration, tube formation, and real-time quantitative polymerase chain reaction (RT-qPCR) of human umbilical vein endothelial cells (HUVECs), but also the best osteogenic property in terms of cell viability, alkaline phosphatase activity, and mineralization of MC3T3-E1 cells. Therefore, TaCu2-NT coating has a greater potential than the other coatings of TNT, Ta-NT and TaCu1-NT in promoting bacteriostasis, angiogenesis and osteointegration for titanium implants.


Subject(s)
Nanotubes , Titanium , Coated Materials, Biocompatible/pharmacology , Corrosion , Humans , Osteogenesis , Surface Properties , Tantalum , Titanium/pharmacology
6.
Int J Nanomedicine ; 16: 8265-8277, 2021.
Article in English | MEDLINE | ID: mdl-35002230

ABSTRACT

BACKGROUND: Sandblasted/acid-etched titanium (SLA-Ti) implants are widely used for dental implant restoration in edentulous patients. However, the poor osteoinductivity and the large amount of Ti particles/ions released due to friction or corrosion will affect its long-term success rate. PURPOSE: Various zirconium hydrogen phosphate (ZrP) coatings were prepared on SLA-Ti surface to enhance its friction/corrosion resistance and osteoinduction. METHODS: The mixture of ZrCl4 and H3PO4 was first coated on SLA-Ti and then calcined at 450°C for 5 min to form ZrP coatings. In addition to a series of physiochemical characterization such as morphology, roughness, wettability, and chemical composition, their capability of anti-friction and anti-corrosion were further evaluated by friction-wear test and by potential scanning. The viability and osteogenic differentiation of MC3T3-E1 cells on different substrates were investigated via MTT, mineralization and PCR assays. RESULTS: The characterization results showed that there were no significant changes in the morphology, roughness and wettability of ZrP-modified samples (SLA-ZrP0.5 and SLA-ZrP0.7) compared with SLA group. The results of electrochemical corrosion displayed that both SLA-ZrP0.5 and SLA-ZrP0.7 (especially the latter) had better corrosion resistance than SLA in normal saline and serum-containing medium. SLA-ZrP0.7 also exhibited the best friction resistance and great potential to enhance the spreading, proliferation and osteogenic differentiation of MC3T3-E1 cells. CONCLUSION: We determined that SLA-ZrP0.7 had excellent comprehensive properties including anti-corrosion, anti-friction and osteoinduction, which made it have a promising clinical application in dental implant restoration.


Subject(s)
Dental Implants , Titanium , Corrosion , Friction , Humans , Hydrogen , Osteogenesis , Phosphates , Surface Properties , Zirconium
7.
Int J Nanomedicine ; 14: 3043-3054, 2019.
Article in English | MEDLINE | ID: mdl-31118621

ABSTRACT

Background: Many studies have shown that the size of nanotube (NT) can significantly affect the behavior of osteoblasts on titanium-based materials. But the weak bonding strength between NT and substrate greatly limits their application. Purpose: The objective of this study was to compare the stability of NT and nanopore (NP) coatings, and further prepare antibacterial titanium-based materials by loading LL37 peptide in NP structures. Methods: The adhesion strength of NT and NP layers was investigated using a scratch tester. The proliferation and differentiation of MC3T3-E1 cells on different substrates were evaluated in vitro by CCK8, alkaline phosphatase activity, mineralization and polymerase chain reaction assays. The antibacterial rates of NP and NP/LL37 were also measured by spread plate method. Moreover, the osteogenesis around NP and NP/LL373 in vivo was further evaluated using uninfected and infected models. Results: Scratch test proved that the NP layers had stronger bonding strength with the substrates due to their continuous pore structures and thicker pipe walls than the independent NT structures. In vitro, cell results showed that MC3T3-E1 cells on NP substrates had better early adhesion, spreading and osteogenic differentiation than those of NT group. In addition, based on the drug reservoir characteristics of porous materials, the NP substrates were also used to load antibacterial LL37 peptide. After loading LL37, the antibacterial and osteogenic induction abilities of NP were further improved, thus significantly promoting osteogenesis in both uninfected and infected models. Conclusion: We determined that the NP layers had stronger bonding strength than NT structures, and the corresponding NP materials might be more suitable than NT for preparing drug-device combined titanium implants for bone injury treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Nanopores , Osteogenesis/drug effects , Titanium/pharmacology , Animals , Cell Differentiation/drug effects , Cell Line , Cell Shape/drug effects , Cell Survival/drug effects , Drug Liberation , Imaging, Three-Dimensional , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Nanopores/ultrastructure , Nanotubes/chemistry , Nanotubes/ultrastructure , Osteoblasts/cytology , Prostheses and Implants , Rats , Surface Properties , Cathelicidins
8.
J Biomed Nanotechnol ; 14(11): 1965-1978, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30165932

ABSTRACT

Implant surface modification that provides local sustained release of osteoinductive therapeutic agents enhances implant stability. We designed a mesoporous TiO2-layered titanium implant (MLT) by modified anodization technique that allowed local sustained release of zoledronic acid up to 21 days. Mesoporous layer has pore size 15 nm, depth ∼30 µm, volume 0.32 cm3/g, surface area 112.3 m2/g, surface roughness 20 nm and water contact angle 18.3°. Zoledronic acid-loaded MLT (MLT-Z) was biocompatible, showed anabolic effect on bone forming osteoblasts and catabolic effect on bone resorbing osteoclasts. MLT or MLT-Z implants were implanted in osteoporotic rat-tail vertebrae. Smooth implant in healthy rats were used as a positive control. Histomorphometric analysis showed that bone implant contact of smooth implant in osteoporotic rats was reduced by 4.1-fold compared to healthy rats and MLT-Z rescued the effect by 53%. Similar effect was observed in implant fixation, mechanical stability, BV/TV ratio, Tb.N, Tb.Th and OI% among the groups. Histological and µ-CT images strongly supported the above-mentioned findings. In conclusion, a novel surface-fabricated MLT-Z gives local sustained drug release, robustly enhances implant osseointegration and stability in osteoporotic condition, suggesting it as a promising implant model for patients with compromised bone quality.


Subject(s)
Osseointegration , Animals , Delayed-Action Preparations , Prostheses and Implants , Rats , Surface Properties , Titanium , Zoledronic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...