Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(5): e16278, 2023 May.
Article in English | MEDLINE | ID: mdl-37251892

ABSTRACT

Chemical coagulation-flocculation has been used widely in water and wastewater treatment. In the present study, green coagulant was investigated. The role of Iraqi plants was examined to remove turbidity by using kaolin synthetic water. Thirteen selected plants were prepared as powdered coagulant. The experiment was run based on coagulant mass varied from 0 to 10,000 mg/L for each plant with a rapid mixing speed of 180 rpm for 5 min, slow mixing speed at 50 rpm for 15 min and settling time for 30 min. The seven best green coagulants are Albizia lebbeck (L.), Clerodendrum inerme (10,000 mg/L), Azadirachta indica, Conocarpus lancifolius, Phoenix dactylifera (5000 mg/L), Dianthus caryophyllus (3000 mg/L) and Nerium oleander (1000 mg/L) with turbidity removal rates of 39.3%, 51.9%, 67.2%, 75.5%, 51.0%, 52.6% and 57.2%, respectively. The selected seven plants that were used as green coagulants are economically feasible to achieve the highest turbidity and removal of other compounds.

2.
Heliyon ; 8(11): e11456, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36406685

ABSTRACT

Phytoremediation is an eco-friendly biotechnology with low costs. The removal of copper (Cu) from polluted water by the two floating plant species Azolla filiculoides and Lemna minor was observed and recorded. Plants were exposed to different Cu (II) concentration (0.25-1.00 mg/L) and sampling time (Days 0, 1, 2, 5 and 7). Both plants can remove Cu at 1.00 mg Cu/L water, with the highest removal rates of 100% for A. filiculoides and 74% for L. minor on the fifth day of exposure. At the end of the exposure period (Day 7), the growth of A. filiculoides exposed to 1.00 mg Cu/L was inhibited by Cu, but the structure of the inner cells of A. filiculoides was well organized as compared to the initial treatment period. Regarding L. minor, Cu at 1.00 mg/L negatively impacted both the growth and morphology (shrinking of its inner structure) of this plant. This is due to the higher accumulation of Cu in L. minor (2.86 mg/g) than in A. filiculoides (1.49 mg/g). Additionally, the rate of Cu removal per dry mass of plant fitted a pseudo-second order model for both plants, whereas the adsorption equilibrium data fitted the Freundlich isotherm, indicating that Cu adsorption occurs in multiple layers. Based on the results, both species can be applied in the phytoremediation of Cu-polluted water.

3.
Heliyon ; 7(11): e08403, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34869927

ABSTRACT

Recently, the spread of pharmaceuticals and personal care products (PPCPs) in the aquatic environment has steadily increased. In this study, phytoremediation technology, using an ornamental plant (Alternanthera spp.), was investigated to improve the removal of acetaminophen (AC) and methylparaben (MP) from a synthetically prepared wastewater. Three exposure lines (AC-line, MP-line and control-line) were performed with a total of 26 subsurface-horizontal constructed wetlands (SSH-CWs) that operated in batch feeding mode. The influence of plants in addition to the initial spiking concentration (20, 60 and 100 mg/L) of AC and MP on the removal efficiency was evaluated throughout the 35-days experiments. The highest removal efficiencies for AC and MP were 88.6% and 66.4%, respectively, achieved in the planted CWs; whereas only 29.7% and 21.9% were achieved in the control CWs for AC and MP, respectively. The results confirmed the role of Alternanthera spp. for accelerating the removal of AC and MP from synthetically contaminated wastewater in CWs.

4.
Sci Rep ; 10(1): 13980, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32814793

ABSTRACT

In the present study, the potential of Salvinia molesta for biodecolorization of methyl orange (MO) dye from water was examined. Six glass vessels were filled with 4 L of water contaminated with MO with three concentrations (5, 15, and 25 mg/L), three with plants and another three without plant as contaminant control. The influence of operational parameters, including initial dye concentration, pH, temperature, and plant growth, on the efficacy of the biodecolorization process by S. molesta was determined. Temperature and pH was in the range of 25-26 °C and 6.3 to 7.3, respectively. Phytotransformation was monitored after 10 days through Fourier transform infrared (FTIR) spectroscopy, and a significant variation in the peak positions was demonstrated when compared to the control plant spectrum, indicating the adsorption of MO. The highest biodecolorization was 42% in a 5 mg/L MO dye concentration at pH 7.3 and at 27 °C. According to the FTIR results, a potential method for the biodecolourization of MO dye by S. molesta was proven. Salvinia molesta can be successfully used for upcoming eco-friendly phytoremediation purposes for dye removal.

5.
Chemosphere ; 247: 125932, 2020 May.
Article in English | MEDLINE | ID: mdl-32069719

ABSTRACT

Due to the increasing importance of diesel and petroleum for industrial development during the last century, petrochemical effluents have significantly contributed to the pollution of aquatic and soil environments. The contamination generated by petroleum hydrocarbons can endanger not only humans but also the environment. Phytoremediation or plant-assisted remediation can be considered one of the best technologies to manage petroleum product-contaminated water and soil. The main advantages of this method are that it is environmentally-friendly, potentially cost-effective and does not require specialised equipment. The scope of this review includes a description of hydrocarbon pollutants from petrochemical industries, their toxicity impacts and methods of treatment and degradation. The major emphasis is on phytodegradation (phytotransformation) and rhizodegradation since these mechanisms are the most favourable alternatives for soil and water reclamation of hydrocarbons using tropical plants. In addressing these issues, this review also covers challenges to retrieve the environment (soil and water) from petroleum contaminations through phytoremediation, and its opportunities to remove or reduce the negative environmental impacts of petroleum contaminations and restore damaged ecosystems with sustainable ways to keep healthy life for the future.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Plants/metabolism , Soil Pollutants/metabolism , Ecosystem , Environmental Pollutants , Hydrocarbons/analysis , Petroleum , Soil , Soil Microbiology , Soil Pollutants/analysis , Water , Water Pollution
6.
Ecotoxicol Environ Saf ; 147: 260-265, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28850808

ABSTRACT

1,2-Dichloroethane (1,2-DCA) is widely present in urban wastewaters and can be remediated by green technology. Subsurface batch system constructed wetlands (SSCWs) using macrophyte species of T. angustifolia L. were examined to remove 1,2-DCA using real wastewater from a petrochemical industry with a 1,2-DCA concentration of 390mg/L. We conducted an experiment with four pilot-scale constructed wetlands (0.81m2) in a greenhouse. Three SSCWs (T2, T3 and T4) were fed with real wastewater, and another one (T1) was fed with tap water (as plant control) to assess the role of T. angustifolia L. and their associated rhizobacteria to remediate 1,2-DCA. Tank T2 contained only sand without plants acting as contaminant control, tank T3 contained sand with plants and finally tank T4 contained plants with mixture of sand, soil and compost (3:2:1). The results show that the green technology has improved the removal of 1,2-DCA from the contaminated water through biodegradation with a remediation efficiency of 100% in T4 within 42 days. The removal efficiency was enhanced in T4 with 18% more than in T3 due to the compost addition, giving evidence for the potential application of SSCWs to treat chlorinated hydrocarbon in real field.


Subject(s)
Ethylene Dichlorides/analysis , Typhaceae/growth & development , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Wetlands , Biodegradation, Environmental , Pilot Projects , Typhaceae/metabolism
7.
Water Sci Technol ; 68(10): 2271-8, 2013.
Article in English | MEDLINE | ID: mdl-24292478

ABSTRACT

One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.


Subject(s)
Cyperaceae , Gasoline , Water Pollutants, Chemical/isolation & purification , Water Purification , Wetlands , Hydrocarbons/isolation & purification , Pilot Projects , Water Quality
8.
J Hazard Mater ; 252-253: 64-9, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23500791

ABSTRACT

In this study, bulrush (Scirpus grossus) was subjected to a 72 day phytotoxicity test to assess its ability to phytoremediate diesel contamination in simulated wastewater at different concentrations (0, 8700, 17,400 and 26,100mg/L). Diesel degradation by S. grossus was measured in terms of total petroleum hydrocarbon (TPH-D). The TPH-D concentration in the synthetic wastewater was determined with the liquid-liquid extraction method and gas chromatography. S. grossus was found to reduce TPH-D by 70.0 and 80.2% for concentrations of 8700 mg/L and 17,400mg/L, respectively. At a diesel concentration of 26,100mg/L, S. grossus died after 14 days. Additionally, the biomass of S. grossus plants was found to increase throughout the phytotoxicity test, confirming the ability of the plant to survive in water contaminated with diesel at rates of less than 17,400mg/L.


Subject(s)
Cyperaceae/drug effects , Gasoline/toxicity , Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Biomass , Cyperaceae/growth & development , Cyperaceae/metabolism , Hydrocarbons/metabolism , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...