Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JIMD Rep ; 65(4): 226-232, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974611

ABSTRACT

Carbonic anhydrase VA (CA-VA) deficiency is a rare cause of hyperammonemia caused by biallelic mutations in CA5A. Most patients present with hyperammonemic encephalopathy in early infancy to early childhood, and patients usually have no further recurrence of hyperammonemia with a favorable outcome. This retrospective cohort study reports 18 patients with CA-VA deficiency caused by homozygosity for a founder mutation, c.59G>A p.(Trp20*) in CA5A. The reported patients show significant intrafamilial and interfamilial variability, and display atypical clinical features. Two adult patients were asymptomatic, 7/18 patients had recurrent hyperammonemia, 7/18 patients developed variable degree of developmental delay, 9/11 patients had hyperCKemia, and 7/18 patients had failure to thrive. Microcephaly was seen in three patients and one patient developed a metabolic stroke. The same variant had been reported already in a single South Asian patient presenting with neonatal hyperammonemic encephalopathy and subsequent development of seizures and developmental delay. This report highlights the limitations of current understanding of the pathomechanisms involved in this disorder, and calls for further evaluation of the possible role of genetic modifiers in this condition.

2.
Mol Genet Genomic Med ; 12(3): e2274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348603

ABSTRACT

Wiedemann-Rautenstrauch Syndrome (WRS; MIM 264090) is an extremely rare and highly heterogeneous syndrome that is inherited in a recessive fashion. The patients have hallmark features such as prenatal and postnatal growth retardation, short stature, a progeroid appearance, hypotonia, facial dysmorphology, hypomyelination leukodystrophy, and mental impairment. Biallelic disease-causing variants in the RNA polymerase III subunit A (POLR3A) have been associated with WRS. Here, we report the first identified cases of WRS syndrome with novel phenotypes in three consanguineous families (two Omani and one Saudi) characterized by biallelic variants in POLR3A. Using whole-exome sequencing, we identified one novel homozygous missense variant (NM_007055: c.2456C>T; p. Pro819Leu) in two Omani families and one novel homozygous variant (c.1895G>T; p Cys632Phe) in Saudi family that segregates with the disease in the POLR3A gene. In silico homology modeling of wild-type and mutated proteins revealed a substantial change in the structure and stability of both proteins, demonstrating a possible effect on function. By identifying the homozygous variants in the exon 14 and 18 of the POLR3A gene, our findings will contribute to a better understanding of the phenotype-genotype relationship and molecular etiology of WRS syndrome.


Subject(s)
Progeria , Pregnancy , Female , Humans , Phenotype , Progeria/genetics , Fetal Growth Retardation/genetics , Mutation, Missense , Syndrome , RNA Polymerase III/genetics
4.
Disaster Med Public Health Prep ; 18: e7, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38239015

ABSTRACT

OBJECTIVE: Radiological emergency preparedness and response are increasingly acknowledged as vital components of both emergency readiness and public health. Previous studies have shown that medical providers feel unprepared to respond to radiation incidents. The existing level of knowledge, attitudes, and awareness held by emergency medicine residents and physicians in Oman, remain unexplored. This study aims to evaluate the knowledge, attitude, and awareness level of emergency residents and physicians in Oman regarding the management of radiation emergencies. METHODS: An electronic survey was distributed to 44 emergency residents and 57 emergency physicians. RESULTS: The response rate was 62.7% (N = 69/110). Notably, 62% reported no prior engagement in radiation emergency training. The majority of participants had neither employed nor received training in operating radiation detection devices. A significant gap in knowledge emerged, with the median self-reported knowledge score of 50/100. The majority of participants (59%) expressed a need for educational programs and materials. CONCLUSION: Our findings underscore the imperative for enhanced training in radiological incident preparedness for emergency medicine residents and physicians in Oman. The study reveals a clear necessity to bridge the existing gaps in knowledge and attitudes to bolster the readiness of health-care professionals to respond effectively to radiation emergencies.


Subject(s)
Disaster Planning , Physicians , Humans , Emergencies , Health Knowledge, Attitudes, Practice , Oman , Surveys and Questionnaires , Self Report
5.
JIMD Rep ; 51(1): 3-10, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32071833

ABSTRACT

Mitochondrial aminoacyl-tRNA synthetases play a major role in protein translation, synthesis, and oxidative phosphorylation. We reviewed all patients diagnosed with mitochondrial aminoacyl-tRNA synthetase deficiencies diagnosed in a single neurometabolic clinic. We report five patients with mitochondrial aminoacyl-tRNA synthetase deficiencies including DARS2, EARS2, PARS2, and RARS2 deficiencies. Siblings with DARS2 deficiency presented with global developmental delay within the first year of life. DARS2, EARS2, PARS2, and RARS2 deficiencies were identified by whole exome sequencing. We report coagulation factor abnormalities in PARS2 deficiency for the first time. We also report symmetric increased signal intensity in globus pallidi in FLAIR images in brain MRI in EARS2 deficiency for the first time. One patient with RARS2 deficiency had compound heterozygous variants in RARS2. One of those variants was an intronic variant. We confirmed the pathogenicity by mRNA studies. Mitochondrial aminoacyl-tRNA synthetase deficiencies are diagnosed by molecular genetic investigations. Clinically available non-invasive biochemical investigations are non-specific for the diagnosis of mitochondrial aminoacyl-tRNA synthetase deficiencies. A combination of brain MRI features and molecular genetic investigations should be undertaken to confirm the diagnosis of mitochondrial aminoacyl-tRNA synthetase deficiencies.

SELECTION OF CITATIONS
SEARCH DETAIL
...