Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 9: 595156, 2021.
Article in English | MEDLINE | ID: mdl-33816459

ABSTRACT

Circular RNAs were once considered artifacts of transcriptome sequencing but have recently been identified as functionally relevant in different types of cancer. Although there is still no clear main function of circRNAs, several studies have revealed that circRNAs are expressed in various eukaryotic organisms in a regulated manner often independent of their parental linear isoforms demonstrating conservation across species. circNFATC3, an abundant and uncharacterized circular RNA of exon 2 and 3 from NFATC3, was identified in transcriptomic data of solid tumors. Here we show that circNFATC3 gain- and loss-of-function experiments using RNAi-mediated circRNA silencing and circular mini vector-mediated overexpression of circularized constructs in breast and ovarian cancer cell lines affect molecular phenotypes. The knockdown of circNFATC3 induces a reduction in cell proliferation, invasion, migration, and oxidative phosphorylation. Gain-of-function of circNFATC3 in MDA-MB-231 and SK-OV-3 cells show a significant increase in cell proliferation, migration, and respiration. The above results suggest that circNFATC3 is a functionally relevant circular RNA in breast and ovarian cancer.

2.
RNA ; 25(12): 1765-1778, 2019 12.
Article in English | MEDLINE | ID: mdl-31519742

ABSTRACT

Circular RNAs (circRNAs) are abundant in eukaryotic transcriptomes and have been linked to various human disorders. However, understanding genetic control of circular RNA expression is in the early stages. Here we present the first integrated analysis of circRNAs and genome sequence variation from lymphoblastoid cell lines of the 1000 Genomes Project. We identified thousands of circRNAs in the RNA-seq data and show their association with local single-nucleotide polymorphic sites, referred to as circQTLs, which influence the circRNA transcript abundance. Strikingly, we found that circQTLs exist independently of eQTLs with most circQTLs having no effect on mRNA expression. Only a fraction of the polymorphic sites are shared and linked to both circRNA and mRNA expression with mostly similar effects on circular and linear RNA. A shared intronic QTL, rs55928920, of HMSD gene drives the circular and linear expression in opposite directions, potentially modulating circRNA levels at the expense of mRNA. Finally, circQTLs and eQTLs are largely independent and exist in separate linkage disequilibrium (LD) blocks with circQTLs highly enriched for functional genomic elements and regulatory regions. This study reveals a previously uncharacterized role of DNA sequence variation in human circular RNA regulation.


Subject(s)
Gene Expression Regulation , Genetic Variation , RNA, Circular , Gene Expression Profiling , Gene Regulatory Networks , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA, Messenger/genetics , Sequence Analysis, DNA , Transcriptome
3.
Int J Mol Sci ; 20(14)2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31336560

ABSTRACT

Transcriptome profiling of 3D models compared to 2D models in various cancer cell lines shows differential expression of TGF-ß-mediated and cell adhesion pathways. Presence of TGF-ß in these cell lines shows an increased invasion potential which is specific to cell type. In the present study, we identified exogenous addition of TGF-ß can induce Epithelial to Mesenchymal Transition (EMT) in a few cancer cell lines. RNA sequencing and real time PCR were carried out in different ovarian cancer cell lines to identify molecular profiling and metabolic profiling. Since EMT induction by TGF-ß is cell-type specific, we decided to select two promising ovarian cancer cell lines as model systems to study EMT. TGF-ß modulation in EMT and cancer invasion were successfully depicted in both 2D and 3D models of SKOV3 and CAOV3 cell lines. Functional evaluation in 3D and 2D models demonstrates that the addition of the exogenous TGF-ß can induce EMT and invasion in cancer cells by turning them into aggressive phenotypes. TGF-ß receptor kinase I inhibitor (LY364947) can revert the TGF-ß effect in these cells. In a nutshell, TGF-ß can induce EMT and migration, increase aggressiveness, increase cell survival, alter cell characteristics, remodel the Extracellular Matrix (ECM) and increase cell metabolism favorable for tumor invasion and metastasis. We concluded that transcriptomic and phenotypic effect of TGF-ß and its inhibitor is cell-type specific and not cancer specific.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/metabolism , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Extracellular Matrix , Female , Humans , Signal Transduction/drug effects , Tumor Cells, Cultured
4.
BMC Cancer ; 19(1): 565, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31185953

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) that form through non-canonical backsplicing events of pre-mRNA transcripts are evolutionarily conserved and abundantly expressed across species. However, the functional relevance of circRNAs remains a topic of debate. METHODS: We identified one of the highly expressed circRNA (circANKRD12) in cancer cell lines and characterized it validated it by Sanger sequencing, Real-Time PCR. siRNA mediated silencing of the circular junction of circANKRD12 was followed by RNA Seq analysis of circANKRD12 silenced cells and control cells to identify the differentially regulated genes. A series of cell biology and molecular biology techniques (MTS assay, Migration analysis, 3D organotypic models, Real-Time PCR, Cell cycle analysis, Western blot analysis, and Seahorse Oxygen Consumption Rate analysis) were performed to elucidate the function, and underlying mechanisms involved in circANKRD12 silenced breast and ovarian cancer cells. RESULTS: In this study, we identified and characterized a circular RNA derived from Exon 2 and Exon 8 of the ANKRD12 gene, termed here as circANKRD12. We show that this circRNA is abundantly expressed in breast and ovarian cancers. The circANKRD12 is RNase R resistant and predominantly localized in the cytoplasm in contrast to its source mRNA. We confirmed the expression of this circRNA across a variety of cancer cell lines and provided evidence for its functional relevance through downstream regulation of several tumor invasion genes. Silencing of circANKRD12 induces a strong phenotypic change by significantly regulating cell cycle, increasing invasion and migration and altering the metabolism in cancer cells. These results reveal the functional significance of circANKRD12 and provide evidence of a regulatory role for this circRNA in cancer progression. CONCLUSIONS: Our study demonstrates the functional relevance of circANKRD12 in various cancer cell types and, based on its expression pattern, has the potential to become a new clinical biomarker.


Subject(s)
Gene Silencing , Neoplasm Invasiveness/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA, Circular/genetics , Biomarkers, Tumor/genetics , Breast/cytology , Breast Neoplasms/pathology , Cell Movement , Cyclin D1/metabolism , Exons/genetics , G1 Phase Cell Cycle Checkpoints , Gene Expression Regulation, Neoplastic , Humans , Lung/cytology , Lung Neoplasms/pathology , MCF-7 Cells , Phenotype , RNA, Small Interfering/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...