Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(4): e0298326, 2024.
Article in English | MEDLINE | ID: mdl-38625872

ABSTRACT

Epidermal growth factor receptor EGFR inhibitors are widely used as first line therapy for the treatment of non-small-cell lung cancer (NSCLC) in patients harboring EGFR mutation. However, the acquisition of a second-site mutation (T790 M) limited the efficacy and developed resistance. Therefore, discovery and development of specific drug target for this mutation is of urgent needs. In our study we used the ChemDiv diversity database for receptor-based virtual screening to secure EGFR-TK inhibitors chemotherapeutics. We identified four compounds that bind to the ATP-binding region of the EGFR-TK using AutoDock 4.0 and AutoDock Vina1.1.2 and post-docking investigations. The ligand showed hydrophobic interactions to the hydrophobic region of the binding site and engaged in hydrogen bonding with Met793. The ligands also explored π-cation interactions between the π-system of the ligand-phenyl ring and the positive amino group of Lys745. Molecular mechanics Poisson-Boltzmann surface area MM/PBSA per-residue energy decomposition analyses revealed that Val726, Leu792, Met793, Gly796, Cys797, Leu798, and Thr844 contributed the most to the binding energy. Biological evaluation of the retrieved hit compounds showed suppressing activity against EGFR auto phosphorylation and selective apoptosis-induced effects toward lung cancer cells harboring the EGFR L858R/T790M double mutation. Our work anticipated into novel and specific EGFR-TKIs and identified new compounds with therapeutic potential against lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , ErbB Receptors/metabolism , Ligands , Protein Kinase Inhibitors/therapeutic use , Mutation , Computational Biology , Drug Resistance, Neoplasm/genetics
2.
J Adv Res ; 50: 177-192, 2023 08.
Article in English | MEDLINE | ID: mdl-36307019

ABSTRACT

INTRODUCTION: Activating the aryl hydrocarbon receptor upon exposure to environmental pollutants promotes development of breast cancer stem cell (CSCs). BCL-2 family proteins protect cancer cells from the apoptotic effects of chemotherapeutic drugs. However, the crosstalk between AhR and the BCL-2 family in CSC development remains uninvestigated. OBJECTIVES: This study explored the interaction mechanisms between AhR and BCL-2 in CSC development and chemoresistance. METHODS: A quantitative proteomic analysis study was performed as a tool for comparative expression analysis of breast cancer cells treated by AhR agonist. The basal and inducible levels of BCL-2, AhR, and CYP1A1 in vitro breast cancer and epithelial cell lines and in vivo mice animal models were determined by RT-PCR, Western blot analysis, immunofluorescence, flow cytometry, silencing of the target, and immunohistochemistry. In addition, an in silico toxicity study was conducted using DEREK software. RESULTS: Activation of the AhR/CYP1A1 pathway in mice increased EpCAMHigh/CD49fLow CD61+ luminal progenitor-like cells in early tumor formation but not in advanced tumors. In parallel, a chemoproteomic study on breast cancer MCF-7 cells revealed that the BCL-2 protein expression was the most upregulated upon AhR activation. The crosstalk between the AhR and BCL-2 pathways in vitro and in vivo modulated the CSCs features and chemoresistance. Interestingly, inhibition of BCL-2 in mice by venetoclax (VCX) increased EpCAMHigh/CD49fLow CD61+ luminal progenitor-like cells, causing inhibition of epithelial lineage markers, disruption of mammary gland branching and induced the epithelial-mesenchymal transition in mammary epithelial cells (MECs). The combined treatment of VCX and AhR antagonists in mice corrected the abnormal differentiation in MECs and protected mammary gland branching and cell identity. CONCLUSIONS: This is the first study to report crosstalk between AhR and BCL-2 in breast CSCs and provides the rationale for using a combined treatment of BCL-2 inhibitor and AhR antagonist for more effective cancer prevention and treatment.


Subject(s)
Cytochrome P-450 CYP1A1 , Receptors, Aryl Hydrocarbon , Mice , Animals , Receptors, Aryl Hydrocarbon/metabolism , Epithelial Cell Adhesion Molecule , Integrin alpha6 , Cell Line, Tumor , Cytochrome P-450 CYP1A1/metabolism , Proteomics , Epithelial Cells/metabolism , Cell Differentiation
3.
Saudi Pharm J ; 30(2): 138-149, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35528855

ABSTRACT

Melanoma is an aggressive skin cancer with a high rate of metastasis to other organs. Recent studies specified the overexpression of V-domain Ig suppressor of T-cell activation (VISTA) and Aryl Hydrocarbon Receptor (AHR) in melanoma. Metformin shows anti-tumor activities in several cancer types. However, the mechanism is unclear. This study aims to investigate the inhibitory effect of metformin on VISTA via AHR in melanoma cells (CHL-1, B16) and animal models. VISTA and AHR levels were assessed by qPCR, Western blot, immunofluorescence microscope, flow cytometry, and immunohistochemistry. Here, metformin significantly decreased VISTA and AHR levels in vitro and in vivo. Furthermore, metformin inhibited all AHR-regulated genes. VISTA levels were dramatically inhibited by AHR modulations using shRNA and αNF, confirming the central role of AHR in VISTA. Finally, melanoma cells were xenografted in C57BL/6 and nude mice. Metformin significantly reduced the tumor volume and growth rate. Likewise, VISTA and AHR-regulated protein levels were suppressed in both models. These findings demonstrate for the first time that VISTA is suppressed by metformin and identified a new regulatory mechanism through AHR. The data suggest that metformin could be a new potential therapeutic strategy to treat melanoma patients combined with targeted immune checkpoint inhibitors.

4.
Semin Cancer Biol ; 83: 177-196, 2022 08.
Article in English | MEDLINE | ID: mdl-32877761

ABSTRACT

Compelling evidence has demonstrated that tumor bulk comprises distinctive subset of cells generally referred as cancer stem cells (CSCs) that have been proposed as a strong sustainer and promoter of tumorigenesis and therapeutic resistance. These distinguished properties of CSCs have raised interest in understanding the molecular mechanisms that govern the maintenance of these cells. Numerous experimental and epidemiological studies have demonstrated that exposure to environmental toxins such as the polycyclic aromatic hydrocarbons (PAHs) is strongly involved in cancer initiation and progression. The PAH-induced carcinogenesis is shown to be mediated through the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR)/Cytochrome P4501A pathway, suggesting a possible direct link between AhR and CSCs. Several recent studies have investigated the role of AhR in CSCs self-renewal and maintenance, however the molecular mechanisms and particularly the epigenetic regulations of CSCs by the AhR/CYP1A pathway have not been reviewed before. In this review, we first summarize the crosstalk between AhR and cancer genetics, with a particular emphasis on the mechanisms relevant to CSCs such as Wnt/ß-catenin, Notch, NF-κB, and PTEN-PI3K/Akt signaling pathways. The second part of this review discusses the recent advances and studies highlighting the epigenetic mechanisms mediated by the AhR/CYP1A pathway that control CSC gene expression, self-renewal, and chemoresistance in various human cancers. Furthermore, the review also sheds light on the importance of targeting the epigenetic pathways as a novel therapeutic approach against CSCs.


Subject(s)
Neoplasms , Receptors, Aryl Hydrocarbon , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Epigenesis, Genetic , Humans , Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
5.
Saudi J Biol Sci ; 28(12): 7396-7403, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34867043

ABSTRACT

Metformin (MET) is a clinically used anti-hyperglycemic agent that shows activities against chemically-induced animal models of cancer. A study from our laboratory showed that MET protectes against 7, 12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenesis in vitro human non-cancerous epithelial breast cells (MCF10A) via activation of the aryl hydrocarbon receptor (AhR). However, it is unclear whether MET can prevent the initiation of breast carcinogenesis in an in vivo rat model of AhR-induced breast carcinogenesis. Therefore, the main aims of this study are to examine the effect of MET on protecting against rat breast carcinogenesis induced by DMBA and to explore whether this effect is medicated through the AhR pathway. In this study, treatment of female rats with DMBA initiated breast carcinogenesis though inhibiting apoptosis and tumor suppressor genes while inducing oxidative DNA damage and cell cycle proliferative markers. This effect was associated with activation of AhR and its downstream target genes; cytochrome P4501A1 (CYP1A1) and CYP1B1. Importantly, MET treatment protected against DMBA-induced breast carcinogenesis by restoring DMBA effects on apoptosis, tumor suppressor genes, DNA damage, and cell proliferation. Mechanistically using in vitro human breast cancer MCF-7 cells, MET inhibited breast cancer stem cells spheroids formation and development by DMBA, which was accompanied by a proportional inhibition in CYP1A1 gene expression. In conclusion, the study reports evidence that MET is an effective chemopreventive therapy for breast cancer by inhibiting the activation of CYP1A1/CYP1B1 pathway in vivo rat model.

6.
Molecules ; 26(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208536

ABSTRACT

A ChCl: Gly (DESs) promoted environmentally benign method was developed for the first time using the reaction of aryl aldehydes and dimedone to give excellent yields of xanthene analogues. The major application of this present protocol is the use of green solvent, a wide range of substrate, short reaction times, ease of recovery, the recyclability of the catalyst, high reaction yield, and ChCl: Gly as an alternative catalyst and solvent. In addition to this, all the synthesized compounds were evaluated for their in vitro antimycobacterial activity against M. tuberculosis H37Ra (MTB) and M. bovis BCG strains. The compounds 3d, 3e, 3f, and 3j showed significant antitubercular activity against MTB and M. bovis strains with minimum inhibitory concentration (MIC) values of 2.5-15.10 µg/mL and 0.26-14.92 µg/mL, respectively. The compounds 3e, 3f, and 3j were found to be nontoxic against MCF-7, A549, HCT 116, and THP-1 cell lines. All the prepared compounds were confirmed by 1H NMR and 13C NMR analysis.


Subject(s)
Cyclohexanones/chemistry , Solvents/chemistry , Xanthenes/chemical synthesis , Aldehydes/chemistry , Antitubercular Agents/pharmacology , Cell Line, Tumor , Glycerol/chemistry , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Xanthenes/chemistry , Xanthenes/isolation & purification
7.
Drug Dev Ind Pharm ; 46(10): 1716-1725, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32893682

ABSTRACT

The use of bacterial ghosts (BGs) for drug delivery is an extremely fascinating perspective especially with the inherited efficient target-ability to specialized tissues. Trafficking of drug molecules across the outer membrane of Gram-negative bacteria are important to be understood for both loading (influx) and drug release (efflux). In this study, Escherichia coli (E. coli) BGs were prepared using modified protocol sponge-like reduced protocol (SLRP) which was used for loading of doxorubicin (DOX). First time in the literature, different possible factors affecting DOX loading from BGs were examined in this study. These factors including drug concentration, temperature, pH gradient, incubation time and tonicity, are proposed to effect on drug loading into E. coli BGs. Results of optimum effect from accompanied factors were found to be 10 mg/mL as DOX concentration at pH 6 with tonicity of 0.7% incubated overnight at 4 °C. After gather all factors, the amount of DOX loaded inside the BGs was recorded as 37.58%. The in vitro release studies of DOX loaded BGs over time showed a burst initial release rate of 26.75% at the first 12 h followed by a period of sustained release lasting for 16 days to give maximum release rate of 58.04%. Remarkably, DOX loaded in BG showed more apoptosis (55%) than control and DOX solution. Overall, the results indicated the presence of some important factors to be controlled when loading drugs into BGs. Also, data showed the future possibility of utilizing BGs to deliver DOX to colon cancer cells.


Subject(s)
Drug Carriers , Escherichia coli , Cell Membrane/metabolism , Doxorubicin/chemistry , Doxorubicin/metabolism , Drug Carriers/metabolism , Drug Delivery Systems , Drug Liberation , Hydrogen-Ion Concentration
8.
J Photochem Photobiol B ; 180: 98-108, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29413708

ABSTRACT

Owing to their structural novelty and inherent three-dimensionality, spiro scaffolds have been shown indisputable promise as chemopreventive agents. A new series of heterocycles containing spirooxindole and pyrrolidine rings were synthesized by the 1,3-dipolar cycloaddition of an azomethine ylide, which was generated in situ by the condensation of a secondary amino acid (l­proline) and dicarbonyl compounds (isatin), with dipolarophiles. This method is simple and provides diverse and biologically interesting products. The new series of compounds with a high degree of stereo- and regioselectivity were evaluated against breast cancer cell lines (MCF-7) and leukemia (K562). Among them, compound 4g was identified as the most potent with IC50 values of 15.49 ±â€¯0.04 µM, against breast cancer cell lines (MCF-7) compared to standard drug 5-Fu (IC50 = 78.28 ±â€¯0.2 µM) and compound 4i IC50 values of 13.38 ±â€¯0.14 µM against leukemia (K562) compared to standard drug 5-fluorouracil (5-FU) (IC50 = 38.58 ±â€¯0.02). The selective apoptotic effects of 4g were investigated against MCF-12 normal mammary cell and the cytotoxicity of 4g was not associated with any induction of necrosis compared to untreated cells. Molecular docking studies were investigated. From the docking data, these compounds could be act as small molecules that inhibit the MDM2-p53 interaction.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Indoles/chemistry , Molecular Docking Simulation , Spiro Compounds/chemistry , Antineoplastic Agents/metabolism , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Cycloaddition Reaction , Fluorouracil/pharmacology , Humans , K562 Cells , MCF-7 Cells , Molecular Conformation , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Quantum Theory , Stereoisomerism
9.
J Enzyme Inhib Med Chem ; 32(1): 935-944, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28718672

ABSTRACT

A new series of quinazolinone compounds 16-34 incorporating isatin moieties was synthesized. The antitumor efficacy of the compounds against MDA-MB-231, a breast cancer cell line, and LOVO, a colon cancer cell line, was assessed. Compounds 20, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, and 34 displayed potent antitumor activity against MDA-MB-231 and LOVO cells (IC50: 10.38-38.67 µM and 9.91-15.77 µM, respectively); the comparative IC50 values for 5-fluorouracil and erlotinib in these cells lines were 70.28 µM, 22.24 µM and 15.23 µM, 25.31 µM respectively. The EGFR-TK assay and induction of apoptosis for compound 31 were investigated to assess its potential cytotoxic activity as a representative example of the novel synthesized compounds. At a concentration of 10 µM, compound 31 exhibited efficient inhibitory effect against EGFR-TK and induced apoptosis in MDA-MB-231 cells. Furthermore, a molecular docking study for compound 31 and erlotinib was performed to verify the binding mode toward the EGFR kinase enzyme, and showed a similar interaction as that with erlotinib alone. Graphical Abstract: Compound 31 showed potent antitumor activity and efficient inhibitory effect against EGFR-TK and induced apoptosis of MDA-MB-231 cells at a concentration of 10 µM.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , ErbB Receptors/antagonists & inhibitors , Isatin/pharmacology , Molecular Docking Simulation , Quinazolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Humans , Isatin/chemistry , Molecular Structure , Quinazolines/chemistry , Structure-Activity Relationship
10.
J Enzyme Inhib Med Chem ; 32(1): 986-991, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28726519

ABSTRACT

Cancer stem cells (CSCs) have been objects of intensive study since their identification in 1994. Adopting a structural rigidification approach, a novel series of 3-phenylthiazolo[3,2-a]benzimidazoles 4a-d was designed and synthesised, in an attempt to develop potent anticancer agent that can target the bulk of tumour cells and CSCs. The anti-proliferative activity of the synthesised compounds was evaluated against two cell lines, namely; colon cancer HT-29 and triple negative breast cancer MDA-MB-468 cell lines. Also, their inhibitory activity against the cell surface expression of CD133 was examined. In particular, compound 4b emerged as a promising hit molecule as it manifested good antineoplastic potency against both tested cell lines (IC50 = 9 and 12 µM, respectively), beside its ability to inhibit the cell surface expression of CD133 by 50% suggesting a promising potential of effectively controlling the tumour by eradicating the tumour bulk and inhibiting the proliferation of the CSCs. Moreover, compounds 4a and 4c showed moderate activity against HT-29 (IC50 = 21 and 29 µM, respectively) and MDA-MB-468 (IC50 = 23 and 24 µM, respectively) cell lines, while they inhibited the CD133 expression by 14% and 48%, respectively. Finally, a single crystal X-ray diffraction was recorded for compound 4d.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Drug Design , Neoplastic Stem Cells/drug effects , Thiazoles/pharmacology , AC133 Antigen/biosynthesis , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
12.
J Enzyme Inhib Med Chem ; 32(1): 600-613, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28173708

ABSTRACT

Treatment of patients with triple-negative breast cancer (TNBC) is challenging due to the absence of well- defined molecular targets and the heterogeneity of such disease. In our endeavor to develop potent isatin-based anti-proliferative agents, we utilized the hybrid-pharmacophore approach to synthesize three series of novel isatin-based hybrids 5a-h, 10a-h and 13a-c, with the prime goal of developing potent anti-proliferative agents toward TNBC MDA-MB-231 cell line. In particular, compounds 5e and 10g were the most active hybrids against MDA-MB-231 cells (IC50 = 12.35 ± 0.12 and 12.00 ± 0.13 µM), with 2.37- and 2.44-fold increased activity than 5-fluorouracil (5-FU) (IC50 = 29.38 ± 1.24 µM). Compounds 5e and 10g induced the intrinsic apoptotic mitochondrial pathway in MDA-MB-231; evidenced by the reduced expression of the anti-apoptotic protein Bcl-2, the enhanced expression of the pro-apoptotic protein Bax and the up-regulated active caspase-9 and caspase-3 levels. Furthermore, 10g showed significant increase in the percent of annexin V-FITC positive apoptotic cells from 3.88 to 31.21% (8.4 folds compared to control).


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Hydrazines/pharmacology , Isatin/pharmacology , Phthalazines/pharmacology , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , In Vitro Techniques
13.
Bioorg Med Chem ; 25(4): 1514-1523, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28126436

ABSTRACT

The 1,3-dipolar cycloadditions of an azomethine ylide generated from isatin and thiazolidinecarboxylic acid to a series of 2,6-bis[(E)-arylmethylidene]cyclohexanones afforded new di-spiro heterocycles incorporating pyrrolidine and oxindole rings in quantitative yields and chemo-, regio-, and stereoselectively. The newly synthesized compounds were characterized using spectroscopic techniques. Furthermore, the molecular structures of 4a, 4e, and 4n were confirmed by X-ray crystallography. These newly synthesized compounds were screened for their in vitro activity against breast cancer cell line MCF-7 and K562-leukemia. 4k was found to be the most potent compound of this series in targeting MCF-7 breast cancer cells and K562-leukemia, with IC50 values of 15.32±0.02 and 14.74±0.7µM, respectively. The molecular studies of the synthesized compounds were investigated.


Subject(s)
Antineoplastic Agents/pharmacology , Indoles/pharmacology , Pyrroles/pharmacology , Spiro Compounds/pharmacology , Thiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indoles/chemistry , K562 Cells , MCF-7 Cells , Models, Molecular , Molecular Structure , Pyrroles/chemistry , Spiro Compounds/chemistry , Structure-Activity Relationship , Thiazoles/chemistry
14.
Mol Cancer ; 16(1): 14, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28103884

ABSTRACT

BACKGROUND: Breast cancer stem cells (CSCs) are small sub-type of the whole cancer cells that drive tumor initiation, progression and metastasis. Recent studies have demonstrated a role for the aryl hydrocarbon receptor (AhR)/cytochrome P4501A1 pathway in CSCs expansion. However, the exact molecular mechanisms remain unclear. METHODS: The current study was designed to a) determine the effect of AhR activation and inhibition on breast CSCs development, maintenance, self-renewal, and chemoresistance at the in vitro and in vivo levels and b) explore the role of ß-Catenin, PI3K/Akt, and PTEN signaling pathways. To test this hypothesis, CSC characteristics of five human breast cancer cells; SKBR-3, MCF-7, and MDA-MB231, HS587T, and T47D treated with AhR activators or inhibitor were determined using Aldefluor assay, side population, and mammosphere formation. The mRNA, protein expression, cellular content and localization of the target genes were determined by RT-PCR, Western blot analysis, and Immunofluorescence, respectively. At the in vivo level, female Balb/c mice were treated with AhR/CYP1A1 inducer and histopathology changes and Immunohistochemistry examination for target proteins were determined. RESULTS: The constitutive mRNA expression and cellular content of CYP1A1 and CYP1B1, AhR-regulated genes, were markedly higher in CSCs more than differentiating non-CSCs of five different human breast cancer cells. Activation of AhR/CYP1A1 in MCF-7 cells by TCDD and DMBA, strong AhR activators, significantly increased CSC-specific markers, mammosphere formation, aldehyde dehydrogenase (ALDH) activity, and percentage of side population (SP) cells, whereas inactivation of AhR/CYP1A1 using chemical inhibitor, α-naphthoflavone (α-NF), or by genetic shRNA knockdown, significantly inhibited the upregulation of ALDH activity and SP cells. Importantly, inactivation of the AhR/CYP1A1 significantly increased sensitization of CSCs to the chemotherapeutic agent doxorubicin. Mechanistically, Induction of AhR/CYP1A1 by TCDD and DMBA was associated with significant increase in ß-Catenin mRNA and protein expression, nuclear translocation and its downstream target Cyclin D1, whereas AhR or CYP1A1 knockdown using shRNA dramatically inhibited ß-Catenin cellular content and nuclear translocation. This was associated with significant inhibition of PTEN and induction of total and phosphorylated Akt protein expressions. Importantly, inhibition of PI3K/Akt pathway by LY294002 completely blocked the TCDD-induced SP cells expansion. In vivo, IHC staining of mammary gland structures of untreated and DMBA (30 mg/kg, IP)- treated mice, showed tremendous inhibition of PTEN expression accompanied with an increase in the expression p-Akt, ß-Catenin and stem cells marker ALDH1. CONCLUSIONS: The present study provides the first evidence that AhR/CYP1A1 signaling pathway is controlling breast CSCs proliferation, development, self-renewal and chemoresistance through inhibition of the PTEN and activation of ß-Catenin and Akt pathways.


Subject(s)
Breast Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Neoplastic Stem Cells/pathology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , beta Catenin/genetics , beta Catenin/metabolism
15.
Molecules ; 21(12)2016 Dec 19.
Article in English | MEDLINE | ID: mdl-27999374

ABSTRACT

Novel 4-(4-substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-dihydropyrimidine-2(1H)-one/thione derivatives (DHP1-9) were designed, synthesized, characterized and evaluated for antitumor activity against cancer stem cells. The compounds were synthesized in one pot. Enaminones E1 and E2 were reacted with substituted benzaldehydes and urea/thiourea in the presence of glacial acetic acid. The synthesized compounds were characterized by spectral analysis. The compounds were screened in vitro against colon cancer cell line (LOVO) colon cancer stem cells. Most of the compounds were found to be active against side population cancer stem cells with an inhibition of >50% at a 10 µM concentration. Compounds DHP-1, DHP-7 and DHP-9 were found to be inactive. Compound DHP-5 exhibited an in vitro anti-proliferative effect and arrested cancer cells at the Gap 2 phase (G2) checkpoint and demonstrated an inhibitory effect on tumor growth for a LOVO xenograft in a nude mouse experiment.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplastic Stem Cells/drug effects , Pyrimidines/chemistry , Thiones/pharmacology , Animals , Cell Line, Tumor , Cell Survival , Colonic Neoplasms , Humans , Mice , Mice, Nude , Molecular Structure , Structure-Activity Relationship , Xenograft Model Antitumor Assays
16.
Int J Mol Sci ; 17(8)2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27483243

ABSTRACT

On account of its poor prognosis and deficiency of therapeutic stratifications, triple negative breast cancer continues to form the causative platform of an incommensurate number of breast cancer deaths. Aiming at the development of potent anticancer agents as a continuum of our previous efforts, a novel series of 2-((benzimidazol-2-yl)thio)-1-arylethan-1-ones 5a-w was synthesized and evaluated for its anti-proliferative activity towards triple negative breast cancer (TNBC) MDA-MB-468 cells. Compound 5k was the most active analog against MDA-MB-468 (IC50 = 19.90 ± 1.37 µM), with 2.1-fold increased activity compared to 5-fluorouracil (IC50 = 41.26 ± 3.77 µM). Compound 5k was able to induce apoptosis in MDA-MB-468, as evidenced by the marked boosting in the percentage of florecsein isothiocyanate annexin V (Annexin V-FITC)-positive apoptotic cells (upper right (UR) + lower right (LR)) by 2.8-fold in comparison to control accompanied by significant increase in the proportion of cells at pre-G1 (the first gap phase) by 8.13-fold in the cell-cycle analysis. Moreover, a quantitative structure activity relationship (QSAR) model was established to investigate the structural requirements orchestrating the anti-proliferative activity. Finally, we established a theoretical kinetic study.


Subject(s)
Apoptosis/drug effects , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Cell Proliferation/drug effects , Triple Negative Breast Neoplasms/pathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biological Assay , Cell Cycle/drug effects , Crystallization , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Models, Molecular , Quantitative Structure-Activity Relationship , Triple Negative Breast Neoplasms/drug therapy , Tumor Cells, Cultured
17.
Stem Cells ; 34(12): 2799-2813, 2016 12.
Article in English | MEDLINE | ID: mdl-27502039

ABSTRACT

An emerging dogma shows that tumors are initiated and maintained by a subpopulation of cancer cells that hijack some stem cell features and thus referred to as "cancer stem cells" (CSCs). The exact mechanism that regulates the maintenance of CSC pool remains largely unknown. Fascin is an actin-bundling protein that we have previously demonstrated to be a major regulator of breast cancer chemoresistance and metastasis, two cardinal features of CSCs. Here, we manipulated fascin expression in breast cancer cell lines and used several in vitro and in vivo approaches to examine the relationship between fascin expression and breast CSCs. Fascin knockdown significantly reduced stem cell-like phenotype (CD44hi /CD24lo and ALDH+ ) and reversal of epithelial to mesenchymal transition. Interestingly, expression of the embryonic stem cell transcriptional factors (Oct4, Nanog, Sox2, and Klf4) was significantly reduced when fascin expression was down-regulated. Functionally, fascin-knockdown cells were less competent in forming colonies and tumorspheres, consistent with lower basal self-renewal activity and higher susceptibility to chemotherapy. Fascin effect on CSC chemoresistance and self-renewability was associated with Notch signaling. Activation of Notch induced the relevant downstream targets predominantly in the fascin-positive cells. Limiting-dilution xenotransplantation assay showed higher frequency of tumor-initiating cells in the fascin-positive group. Collectively, our data demonstrated fascin as a critical regulator of breast CSC pool at least partially via activation of the Notch self-renewal signaling pathway and modification of the expression embryonic transcriptional factors. Targeting fascin may halt CSCs and thus presents a novel therapeutic approach for effective treatment of breast cancer. Stem Cells 2016;34:2799-2813 Video Highlight: https://youtu.be/GxS4fJ_Ow-o.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carrier Proteins/metabolism , Cell Self Renewal , Microfilament Proteins/metabolism , Neoplastic Stem Cells/pathology , Receptors, Notch/metabolism , Signal Transduction , Animals , Antigens, CD/metabolism , Breast Neoplasms/genetics , Carrier Proteins/genetics , Cell Line, Tumor , Cell Self Renewal/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Human Embryonic Stem Cells/metabolism , Humans , Kruppel-Like Factor 4 , Mice, Nude , Microfilament Proteins/genetics , Neoplastic Stem Cells/metabolism , Phenotype , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Tumor Stem Cell Assay
18.
Bioorg Med Chem Lett ; 26(7): 1664-70, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26944615

ABSTRACT

Cell surface molecule CD44 plays a major role in regulation of cancer stem cells CSCs on both phenotypic and functional level, however chemical inhibition approach of CD44 to targets CSCs is poorly studied. Herein, we report the discovery of certain N'-(2-oxoindolin-3-ylidene)-2-(benzyloxy)benzohydrazides as a novel inhibitor of CD44. Molecular docking study showed interference of the scaffold of these compounds with ß-catenin/TCF-4 complex, building a direct relationship between CD44 inhibition and observed well-fitted binding domain. Compound 11a, most potent member elicits inhibition effect on TCF/LEF reporter activity conformed the involvement of Wnt pathway inhibition as a mechanism of action. Furthermore, the treatment by the mentioned compound leads to inhibition of embryonic transcriptional factor Nanog but not Sox2 or Oct-4 suggested specific targeted effect. Moreover, the cytotoxicity and cell cycle effect of this series seems to be dependent on CD44 expression.


Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/drug therapy , Homeodomain Proteins/metabolism , Hyaluronan Receptors/metabolism , Hydrazines/pharmacology , Signal Transduction/drug effects , beta Catenin/metabolism , Antineoplastic Agents/chemistry , Cell Line, Tumor , Colon/drug effects , Colon/metabolism , Colon/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Hydrazines/chemistry , Molecular Docking Simulation , Nanog Homeobox Protein , Wnt Proteins/metabolism , Wnt Signaling Pathway/drug effects
19.
Molecules ; 20(10): 18246-63, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26457700

ABSTRACT

Lead derivatives of 2-cyclohexyl-N-[(Z)-(3-methoxyphenyl/3-hydroxyphenyl) methylidene]hydrazinecarbothioamides 1-18 were synthesized, characterized and evaluated in vitro against HER-2 overexpressed breast cancer cell line SKBr-3. All the compounds showed activity against HER-2 overexpressed SKBr-3 cells with IC50 = 17.44 ± 0.01 µM to 53.29 ± 0.33 µM. (2Z)-2-(3-Hydroxybenzylidene)-N-(3-methoxyphenyl)hydrazinecarbothioamide (12, IC50 = 17.44 ± 0.01 µM) was found to be most potent compound of this series targeting HER-2 overexpressed breast cancer cells compared to the standard drug 5-fluorouracil (5-FU) (IC50 = 38.58 ± 0.04 µM). Compound 12 inhibited the cellular proliferation via DNA degradation.


Subject(s)
Breast Neoplasms/genetics , Guanidines/chemical synthesis , Guanidines/pharmacology , Lead/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , DNA, Neoplasm/drug effects , Female , Fluorouracil/pharmacology , Guanidines/chemistry , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/genetics
20.
Eur J Med Chem ; 104: 1-10, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26413725

ABSTRACT

In order to develop a potent anti-tumor agent that can target both cancer stem cells and the bulk of tumor cells, a series of 2-((benzimidazol-2-yl)thio)-1-arylethan-1-ones 5a-o was synthesized. All compounds were evaluated for their anti-proliferative activity towards colon HT-29 cancer cell line. In addition, their inhibitory effect against cell surface expression of CD133, a potent cancer stem cells (CSCs) marker, in the same cells was evaluated by flow cytometry at 10 µM. Compound 5l emerged as the most active anti-proliferative analog against HT-29 (IC50 = 18.83 ± 1.37 µM), that almost equipotent as 5-fluorouracil (IC50 = 15.83 ± 1.63 µM) with 50.11 ± 4.05% inhibition effect on CD133 expression, suggested dual targeted effect. Also, compounds 5h, 5j, 5k and 5m-o inhibited the expression of CD133 with more than 50%. The SAR study pointed out the significance of substitution of the pendent phenyl group with lipophilic electron-donating groups or replacing it by 2-thienyl or 2-furyl groups.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Glycoproteins/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Peptides/antagonists & inhibitors , AC133 Antigen , Antigens, CD/biosynthesis , Antineoplastic Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glycoproteins/biosynthesis , HT29 Cells , Humans , Models, Molecular , Molecular Structure , Neoplastic Stem Cells/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...