Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Biomed Rep ; 11(6): 275, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31819801

ABSTRACT

[This corrects the article DOI: 10.3892/br.2018.1053.].

3.
J Pregnancy ; 2019: 4302309, 2019.
Article in English | MEDLINE | ID: mdl-31080672

ABSTRACT

It is well known that pregnancy is associated with frequent gastrointestinal (GI) disorders and symptoms. Moreover, previous reports have shown that estrogen, which changes in levels during pregnancy, participates in the regulation of GI motility and is involved in the pathogenesis of various functional disorders in the stomach. The aim of the current study was to explore the changes in the expression of estrogen receptors (ERs) and examine the effect of estrogen on nitric oxide- (NO-) cyclic guanosine monophosphate (cGMP) pathway and thus relaxation in gastric smooth muscle cells (GSMC) during pregnancy. Single GSMC from early-pregnant and late-pregnant Sprague-Dawley rats were used. Protein and mRNA expression levels of ERs were measured via specifically designed enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), respectively. NO and cGMP levels were measured via specifically designed ELISA kits. Effect of estrogen on acetylcholine- (ACh-) induced contraction of single GSMC was measured via scanning micrometry in the presence or absence of the NO synthase inhibitor, N-nitro-L-arginine (L-NNA), or guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Estrogen increased both NO and cGMP levels and their levels were greater in early compared to late pregnancy. Expression of ERs was greater in early compared to late pregnancy. ACh induced greater contraction of GSMC in late pregnancy compared to early pregnancy. Estrogen inhibited ACh-induced contraction in both periods of pregnancy. Importantly, pretreatment of GSMC with either L-NNA or ODQ abolished estrogen inhibitory action on muscle contraction. In conclusion, GSMC contractile behavior undergoes drastic changes in response to estrogen during pregnancy and this might explain some of the pregnancy-associated gastric disorders.


Subject(s)
Cyclic GMP/metabolism , Estrogens/metabolism , Myocytes, Smooth Muscle/physiology , Nitric Oxide/metabolism , Pregnancy/psychology , Receptors, Estrogen/metabolism , Stomach/physiology , Animals , Biomarkers/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Polymerase Chain Reaction , Rats , Rats, Sprague-Dawley
4.
Biomed Rep ; 9(6): 511-516, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30546879

ABSTRACT

Previous studies have shown that progesterone could inhibit muscle contraction in various sites of the gastrointestinal tract. The underlying mechanisms responsible for these inhibitory effects of progesterone are not fully known. The aim of the current study was to investigate the effect of progesterone on the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway and muscle contraction in the stomach. Single gastric smooth muscle cells from female Sprague-Dawley rats were used. The expression of progesterone receptor (PR) mRNA was analyzed by reverse transcription polymerase chain reaction. NO and cGMP levels were measured via specific ELISAs. Acetylcholine (ACh)-induced contraction of single gastric muscle cells preincubated with progesterone was measured via scanning micrometry in the presence or absence of the NO synthase inhibitor, Nω-Nitro-L-arginine (L-NNA), or guanylyl cyclase inhibitor, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and expressed as percent shortening from resting cell length. PR expression was detected in the stomach muscle cells. Progesterone inhibited ACh-induced gastric muscle cell contraction. Furthermore, progesterone increased NO and cGMP levels in single gastric muscle cells. Most notably, pre-incubation of muscle cells with either L-NNA or ODQ abolished the inhibitory action of progesterone on muscle contraction. These present observations suggest that progesterone promotes muscle cell relaxation in the stomach potentially via the NO/cGMP pathway.

5.
Exp Ther Med ; 16(3): 1685-1692, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30186388

ABSTRACT

Various gastrointestinal (GI) disorders have a higher prevalence in women than in men. In addition, estrogen has been demonstrated to have an inhibitory effect on the contractility of GI smooth muscle. Although increased plasma estrogen levels have been implicated in GI disorders, the role of gastric estrogen receptor (ER) in these sex-specific differences remains to be fully elucidated. The present study was designed to investigate the sex-associated differences in the expression of the two ER isoforms, ERα and ERß, and the effect of estrogen on gastric muscle contraction via the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway. Experiments were performed on single gastric smooth muscle cells (GSMCs) isolated from male and female Sprague Dawley rats. The effect of acetylcholine (ACh), a muscarinic agonist, on the contraction of GSMCs was measured via scanning micrometry in the presence or absence of 1 µM 17ß-estradiol (E2), an agonist to the majority of ERs, 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), an ERα agonist, or diarylpropionitrile (DPN), an ERß agonist. The protein expression levels of ER subtypes in GSMCs were measured using a specifically designed ELISA. GSMCs from female rats had a higher expression of ERα and ERß protein compared with GSMCs from males. ACh induced less contraction in female that in male GSMCs. Pre-treatment of GSMCs with E2 reduced the contraction of GSMCs from both sexes, but to a greater extent in those from females. PPT and DPN inhibited ACh-induced contraction in GSMCs from females. Furthermore, E2 increased NO and cGMP levels in GSMCs from males and females; however, higher levels were measured in females. Of note, pre-incubation of female GSMCs with Nω-nitro-L-arginine, a NO synthase inhibitor, or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a guanylyl cyclase inhibitor, reduced the inhibitory effect of estrogen on GSMC contraction. In conclusion, estrogen relaxes GSMCs via an NO/cGMP-dependent mechanism, and the reduced contraction in GSMCs from females by estrogen may be associated with the sex-associated increased expression of ERα and ERß, and greater production of NO and cGMP, compared with that in GSMCs from males.

7.
Korean J Fam Med ; 39(2): 108-113, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29629043

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common reproductive disorder. Obesity, which is linked with lower adiponectin levels, increases a woman's risk of developing PCOS; however, the association between adiponectin and PCOS is controversial. Adiponectin levels could be affected by single nucleotide polymorphisms (SNPs) in the ADIPOQ gene. This study aimed to test the relationship between serum adiponectin and PCOS in Jordan and the association between the rs2241766, rs1501299, and rs266729 SNPs in the ADIPOQ gene and PCOS. METHODS: One hundred and fifty-four women with PCOS and 149 age- and body mass index-matched normally menstruating controls were recruited. Serum adiponectin levels were measured using enzyme-linked immunosorbent assay. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism analysis. RESULTS: Serum adiponectin levels were significantly lower (P=0.0064) in PCOS women and rs1501299 (+276 G/T) genotype distributions were significantly different (P=0.01) between them and normally menstruating women. Multivariate analysis revealed that adiponectin levels remained significantly lower in PCOS women (P=0.001; odds ratio [OR], 0.9; 95% confidence interval [CI], 0.84-0.96). The GT genotype of rs1501299 increased the risk of PCOS (P<0.001; OR, 5.46; 95% CI, 2.42-12.33) and increased the risk of PCOS by three-fold (P<0.001; OR, 3.00; 95% CI, 1.36-6.60) relative to the TT genotype. The GG genotype increased the risk of PCOS as well (P<0.001; OR, 3:00; 95% CI, 1.36-6.60). CONCLUSION: PCOS is associated with lower serum adiponectin levels independent of age and body mass index. The T allele of the rs1501299 (+276 G/T) SNP of the ADIPOQ gene protects against PCOS.

8.
Biomed Rep ; 8(3): 283-288, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29599980

ABSTRACT

Evidence of sex-related differences in gastrointestinal (GI) functions has been reported in the literature. In addition, various GI disorders have disproportionate prevalence between the sexes. An essential step in the initiation of smooth muscle contraction is the phosphorylation of the 20-kDa regulatory myosin light chain (MLC20) by the Ca2+/calmodulin-dependent myosin light chain kinase (MLCK). However, whether male stomach smooth muscle inherits different contractile signaling mechanisms for the regulation of MLC20 phosphorylation from that in females has not been established. The present study was designed to investigate sex-associated differences in the regulation of MLC20 phosphorylation and thus muscle contraction in gastric smooth muscle cells (GSMCs). Experiments were performed on GSMCs freshly isolated from male and female rats. Contraction of the GSMCs in response to acetylcholine (ACh), a muscarinic agonist, was measured via scanning micrometry in the presence or absence of the MLCK inhibitor, ML-7. Additionally, the protein levels of MLC20, MLCK and phosphorylated MLC20 were measured by ELISA. The protein levels of MLC20 and MLCK were indifferent between the sexes. ACh induced greater contraction (P<0.05) as well as greater MLC20 phosphorylation (P<0.05) in male GSMCs compared with female. Pretreatment of GSMCs with ML-7 significantly reduced the ACh-induced contraction (P<0.05) and MLC20 phosphorylation (P<0.05) in the male and female cells, and notably, abolished the contractile differences between the sexes. In conclusion, MLC20 phosphorylation and thus muscle contraction may be activated to a greater extent in male rat stomach compared with that in females.

9.
Arch Physiol Biochem ; 124(5): 418-423, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29256275

ABSTRACT

Peroxynitrite is a reactive nitrogen species produced in the intravascular compartment from superoxide anion and nitric oxide. Peroxynitrite destroys blood plasma proteins and membranes of red blood cells and of platelets. This explains why excessive production of peroxynitrite contributes to diseases and to ageing. Therapeutics that antagonize peroxynitrite may delay ageing and the progression of disease. We developed an in vitro assay that allows the investigation of the oxidative damage caused by peroxynitrite in the intravascular compartment. This assay correlates the damage with the rate of formation of protein carbonyl groups, 3-nitrotyrosine (3-NT) and thiobarbituric acid reactive substances. Using this assay, we evaluated the ability of phenelzine, a scavenger of reactive aldehydes, to antagonize the effects of peroxynitrite. Herein, we showed that phenelzine significantly decreased the lipid peroxidative damage caused by peroxynitirite in blood plasma and platelets. Moreover, it inhibited carbonyl group and 3-NT formation in blood plasma and platelet proteins.


Subject(s)
Free Radical Scavengers/pharmacology , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Peroxynitrous Acid/antagonists & inhibitors , Phenelzine/pharmacology , Protein Carbonylation/drug effects , Adult , Antioxidants/pharmacology , Blood Platelets/drug effects , Blood Proteins/chemistry , Blood Proteins/metabolism , Humans , Osmolar Concentration , Oxidation-Reduction , Peroxynitrous Acid/toxicity , Plasma/drug effects , Thiobarbituric Acid Reactive Substances/analysis , Thiobarbituric Acid Reactive Substances/chemistry , Thiobarbituric Acid Reactive Substances/metabolism , Tyrosine/agonists , Tyrosine/analogs & derivatives , Tyrosine/antagonists & inhibitors , Tyrosine/chemistry , Tyrosine/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...