Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound Med Biol ; 47(3): 759-768, 2021 03.
Article in English | MEDLINE | ID: mdl-33358050

ABSTRACT

The goal of the work described here was to assess the performance of Doppler ultrasound (US) of the superior mesenteric artery (SMA) and celiac trunk (CT) in the evaluation of tumor response in female mice with ovarian peritoneal carcinomatosis treated either with bevacizumab or with carboplatin. Compared with untreated mice, carboplatin-treated mice had a lower weight (23.3 ± 2.0 vs. 27.9 ± 2.9 g, p < 0.001), peritoneal carcinomatosis index (PCI, 11 ± 3 vs. 28 ± 6, p < 0.001), Ki67-positive staining surfaces (p < 0.001), vascular density (p < 0.001), mean blood flow velocity (mBFVel) in the SMA (7.0 ± 1.4 vs. 10.9 ± 1.8 cm/s, p < 0.001) and CT (8.0 ± 1.8 vs. 14.3 ± 4.6 cm/s, p < 0.001) and no ascites. Weight and mBFVel were similar in bevacizumab-treated and untreated mice. The mBFVels in the SMA and CT correlated with the PCI used as an estimation of the tumor burden, R = 0.70 (p < 0.0001) and R = 0.65 (p < 0.0001), respectively. Doppler US allows non-invasive assessment of the effects of anticancer therapy in ovarian peritoneal carcinomatosis-induced mice.


Subject(s)
Antineoplastic Agents/therapeutic use , Bevacizumab/therapeutic use , Carboplatin/therapeutic use , Celiac Artery/diagnostic imaging , Mesenteric Artery, Superior/diagnostic imaging , Ovarian Neoplasms/blood supply , Ovarian Neoplasms/drug therapy , Peritoneal Neoplasms/blood supply , Peritoneal Neoplasms/drug therapy , Ultrasonography, Doppler , Animals , Female , Mice , Mice, Inbred C57BL , Treatment Outcome , Tumor Cells, Cultured
2.
Neoplasia ; 22(12): 809-819, 2020 12.
Article in English | MEDLINE | ID: mdl-33152619

ABSTRACT

AIM: Evaluation of fibrin role on cancer cells implantation in injured tissues and studying the molecular mechanism of cancer cell interaction with the peritoneal damage. MATERIAL AND METHODS: Mouse colon cancer (CT26) and human mesothelial cells (HMCs) were used. CT26 cells were implanted on injured peritoneal zones. Icodextrin was used as a lubricant. For in vitro studies, fibrin clots from human plasma were used. The cell-fibrin interaction was observed by optical, electronic, and confocal microscopies. Aprotinin was used as a plasmin inhibitor. Hemostasis impact quantified by (1) the fibrin degradation product D-Dimer and PAR expression in HMCs; (2) the expression of plasminogen activator (PA) and its inhibitor (PAI-1) in cancer cells by qPCR and in supernatants through ELISA after in vitro HMC incubation with 2U of thrombin for 24 h. RESULTS: (i) Cancer cell lines were adhered and implanted into the wound area in vivo in both the incision and peeling zones of the peritoneum and on the fibrin network in vitro. (ii) Icodextrin significantly inhibited cancer nodule formation in the scar and the incision or peritoneal damaged zones after surgery. (iii) In in vitro studies, cancer cell interaction with the fibrin clot generated a lysed area, causing an increase in plasmin-dependent fibrinolysis measured by D-dimer levels in the supernatants that was inhibited by aprotinin. (iv) Aprotinin inhibited cell-fibrin interaction and invasion. (v) Thrombin upregulates PAI-1 and downregulates PA expression in HMC. CONCLUSION: Injured tissues favor cancer cell implantation through generated fibrin. Fibrin-cancer cells adhesion can be inhibited by icodextrin.


Subject(s)
Cicatrix/metabolism , Fibrin/metabolism , Neoplasm Transplantation , Animals , Cell Adhesion , Cell Culture Techniques , Cell Line, Tumor , Cicatrix/etiology , Cicatrix/pathology , Disease Models, Animal , Female , Fluorescent Antibody Technique , Humans , Mice , Neoplasm Transplantation/methods , Peritoneum/metabolism , Peritoneum/pathology
3.
BMC Cancer ; 20(1): 565, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32552705

ABSTRACT

BACKGROUND: It may be impossible to perform cancer surgery with free margins in the presence of an unresectable structure. Local drug treatment after surgery has been proposed to increase the rate of tumor control. METHODS: Multi-nanolayers (10-330 nm) were generated by a low-pressure (375mTorr) inductively coupled plasma (13.56 MHz) reactor for anticancer drug delivery by the deposition of polycaprolactone-polyethylene glycol multistack barrier on the collagen membrane (100 µm thickness). Carboplatin (300 µg/cm2) was used for the in vitro and in vivo investigations. Energy-dispersive X-ray spectroscopy (15 keV), scanning electron microscopy and inductively coupled plasma mass spectrometry were used to detect the presence of carboplatin in the nanolayer, the tumor sample and the culture medium. Preclinical studies were performed on ovarian (OVCAR-3NIH) and colon (CT26) cancer cell lines as xenografts (45 days) and allografts (23 days) in Swiss-nude (n = 6) and immunocompetent BALB/cByJ mice (n = 24), respectively. RESULTS: The loading of carboplatin or other drugs between the nanofilm on the collagen membrane did not modify the mesh complex architecture or the drug properties. Drugs were detectable on the membrane for more than 2 weeks in the in vitro analysis and more than 10 days in the in vivo analysis. Cytotoxic mesh decreased cell adherence (down 5.42-fold) and induced cancer cell destruction (up to 7.87-fold). Implantation of the mesh on the mouse tumor nodule modified the cell architecture and decreased the tumor size (50.26%) compared to the control by inducing cell apoptosis. CONCLUSION: Plasma technology allows a mesh to be built with multi-nanolayer anticancer drug delivery on collagen membranes.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Compounding/methods , Drug Delivery Systems/methods , Neoplasms/drug therapy , Plasma Gases , Animals , Apoptosis/drug effects , Carboplatin/administration & dosage , Cell Line, Tumor , Female , Humans , Mice , Nanomedicine/methods , Nanostructures , Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
Sci Rep ; 9(1): 14656, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601984

ABSTRACT

In peripherally acquired prion diseases, prions move through several tissues of the infected host, notably in the lymphoid tissue, long before the occurrence of neuroinvasion. Accumulation can even be restricted to the lymphoid tissue without neuroinvasion and clinical disease. Several experimental observations indicated that the presence of differentiated follicular dendritic cells (FDCs) in the lymphoid structures and the strain type are critical determinants of prion extraneural replication. In this context, the report that granulomatous structures apparently devoid of FDCs could support prion replication raised the question of the requirements for prion lymphotropism. The report also raised the possibility that nonlymphoid tissue-tropic prions could actually target these inflammatory structures. To investigate these issues, we examined the capacity of closely related prions, albeit with opposite lymphotropism (or FDC dependency), for establishment in experimentally-induced granuloma in ovine PrP transgenic mice. We found a positive correlation between the prion capacity to accumulate in the lymphoid tissue and granuloma, regardless of the prion detection method used. Surprisingly, we also revealed that the accumulation of prions in granulomas involved lymphoid-like structures associated with the granulomas and containing cells that stain positive for PrP, Mfge-8 but not CD45 that strongly suggest FDCs. These results suggest that the FDC requirement for prion replication in lymphoid/inflammatory tissues may be strain-dependent.


Subject(s)
Dendritic Cells, Follicular/metabolism , Granuloma/pathology , Prion Diseases/pathology , Prion Proteins/metabolism , Animals , Antigens, Surface/metabolism , Disease Models, Animal , Humans , Macrophages/metabolism , Mice , Mice, Transgenic , Milk Proteins/metabolism , Prion Proteins/genetics , Prion Proteins/isolation & purification , Prion Proteins/toxicity , Protein Folding , Sheep , Spleen/cytology , Tropism
5.
Mater Sci Eng C Mater Biol Appl ; 105: 110089, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31546399

ABSTRACT

A low pressure ICP plasma setup was utilized to deposit thin organic barrier coatings on various substrates to fabricate DDS with encapsulated Carboplatin as a drug and Methylene Blue as a drug model. Choice of the substrates and optimal plasma parameters were discussed for the fabrication of DDS with required characteristics. Prepared thin films were analysed by FTIR, SEM, and the barrier properties were studied by measuring drug concentration released into the medium by UV-VIS and ICP-MS techniques.


Subject(s)
Antineoplastic Agents , Carboplatin , Drug Delivery Systems , Membranes, Artificial , Methylene Blue , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Carboplatin/chemistry , Carboplatin/pharmacokinetics , Carboplatin/pharmacology , Humans , Methylene Blue/chemistry , Methylene Blue/pharmacokinetics , Methylene Blue/pharmacology , Plasma Gases
6.
Int J Cell Biol ; 2017: 1873834, 2017.
Article in English | MEDLINE | ID: mdl-28465688

ABSTRACT

The thrombopoietin (TPO) gene expression in human ovary and cancer cells from patients with ovarian carcinomatosis, as well as several cancer cell lines including MDA-MB231 (breast cancer), K562 and HL60 (Leukemic cells), OVCAR-3NIH and SKOV-3 (ovarian cancer), was performed using RT PCR, real-time PCR, and gene sequencing. Human liver tissues are used as controls. The presence of TPO in the cells and its regulation by activated protein C were explored by flow cytometry. TPO content of cell extract as well as plasma of a patient with ovarian cancer was evaluated by ELISA. The functionality of TPO was performed in coculture on the basis of the viability of a TPO-dependent cell line (Ba/F3), MTT assay, and Annexin-V labeling. As in liver, ovarian tissues and all cancer cells lines except the MDA-MB231 express the three TPO-1 (full length TPO), TPO-2 (12 bp deletion), and TPO-3 (116 pb deletion) variants. Primary ovarian cancer cells as well as cancer cell lines produce TPO. The thrombopoietin production by OVCAR-3 increased when cells are stimulated by aPC. OVCAR-3 cell's supernatant can replace exogenous TPO and inhibited TPO-dependent cell line (Ba/F3) apoptosis. The thrombopoietin produced by tumor may have a direct effect on thrombocytosis/thrombosis occurrence in patients with ovarian cancer.

7.
Oncotarget ; 7(36): 58121-58132, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27486769

ABSTRACT

A low pressure plasma process based on plasma deposition has been used to develop a drug delivery strategy. In this study, a drug delivery system based on different layers of plasma co-polymerized Poly ε-caprolactone-Polyethylene glycol (PCL-PEG) co-polymers was deposited on biocompatible substrates. Cis-platinum (118 µgm/cm2) was used as an anti-cancer drug and incorporated for local delivery of the chemotherapeutic agent. The co-polymer layers and their interaction with cancer cells were analyzed by scanning electron microscopy. Our study showed that the plasma-PCL-PEG coated cellophane membranes, in which the drug, was included did not modify the flexibility and appearance of the membranes. This system was actively investigated as an alternative method of controlling localized delivery of drug in vivo. The loading of the anti-cancer drug was investigated by UV-VIS spectroscopy and its release from plasma deposited implants against BALB/c mice liver tissues were analyzed through histological examination and apoptosis by TUNEL assay. The histological examination of liver tissues revealed that when the plasma-modified membranes encapsulated the cis-platinum, the Glisson's capsule and liver parenchyma were damaged. In all cases, inflammatory tissues and fibrosis cells were observed in contact zones between the implant and the liver parenchyma. In conclusion, low pressure plasma deposited uniform nano-layers of the co-polymers can be used for controlled release of the drug in vivo.


Subject(s)
Antineoplastic Agents/administration & dosage , Cisplatin/administration & dosage , Drug Carriers/chemistry , Polymerization/radiation effects , Animals , Biodegradable Plastics/chemistry , Biodegradable Plastics/radiation effects , Caproates/chemistry , Caproates/radiation effects , Cellophane/chemistry , Cellophane/radiation effects , Delayed-Action Preparations/administration & dosage , Drug Carriers/radiation effects , Drug Implants , Female , Lactones/chemistry , Lactones/radiation effects , Liver/drug effects , Mice , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Polyethylene Glycols/chemistry , Polyethylene Glycols/radiation effects , Polymers/chemistry , Polymers/radiation effects , Radio Waves , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...