Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Health Perspect ; 130(1): 17011, 2022 01.
Article in English | MEDLINE | ID: mdl-35072517

ABSTRACT

BACKGROUND: Chronic arsenic exposure via drinking water is associated with an increased risk of developing cancer and noncancer chronic diseases. Pre-mRNAs are often subject to alternative splicing, generating mRNA isoforms encoding functionally distinct protein isoforms. The resulting imbalance in isoform species can result in pathogenic changes in critical signaling pathways. Alternative splicing as a mechanism of arsenic-induced toxicity and carcinogenicity is understudied. OBJECTIVE: This study aimed to accurately profile differential alternative splicing events in human keratinocytes induced by chronic arsenic exposure that might play a role in carcinogenesis. METHODS: Independent quadruplicate cultures of immortalized human keratinocytes (HaCaT) were maintained continuously for 28 wk with 0 or 100 nM sodium arsenite. RNA-sequencing (RNA-Seq) was performed with poly(A) RNA isolated from cells harvested at 7, 19, and 28 wk with subsequent replicate multivariate analysis of transcript splicing (rMATS) analysis to detect and quantify differential alternative splicing events. Reverse transcriptase-polymerase chain reaction (RT-PCR) for selected alternative splicing events was performed to validate RNA-Seq predictions. Functional enrichment was performed by gene ontology (GO) analysis of the differential alternative splicing event data set at each time point. RESULTS: At least 600 differential alternative splicing events were detected at each time point tested, comprising all the five main types of alternative splicing and occurring in both open reading frames (ORFs) and untranslated regions (UTRs). Based on functional relevance ELK4, SHC1, and XRRA1 were selected for validation of predicted alternative splicing events at 7 wk by RT-PCR. Densitometric analysis of RT-PCR data corroborated the rMATS predicted alternative splicing for all three events. Protein expression validation of the selected alternative splicing events was challenging given that very few isoform-specific antibodies are available. GO analysis demonstrated that the enriched terms in differential alternatively spliced mRNAs changed dynamically with the time of exposure. Notably, RNA metabolism and splicing regulation pathways were enriched at the 7-wk time point, when the greatest number of differentially alternatively spliced mRNAs are detected. Our preliminary proteomic analysis demonstrated that the expression of the canonical isoforms of the splice regulators DDX42, RMB25, and SRRM2 were induced upon chronic arsenic exposure, corroborating the splicing predictions. DISCUSSION: These results using cultures of HaCaT cells suggest that arsenic exposure disrupted an alternative splice factor network and induced time-dependent genome-wide differential alternative splicing that likely contributed to the changing proteomic landscape in arsenic-induced carcinogenesis. However, significant challenges remain in corroborating alternative splicing data at the proteomic level. https://doi.org/10.1289/EHP9676.


Subject(s)
Arsenic , Alternative Splicing , Arsenic/metabolism , Arsenic/toxicity , HaCaT Cells , Humans , Keratinocytes/metabolism , Proteins/genetics , Proteins/metabolism , Proteomics
2.
Toxicol Sci ; 185(2): 184-196, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34730829

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) is a major deleterious health effect of chronic arsenic (iAs) exposure. The molecular mechanism of arsenic-induced cSCC remains poorly understood. We recently demonstrated that chronic iAs exposure leads to temporally regulated genome-wide changes in profiles of differentially expressed mRNAs and miRNAs at each stage of carcinogenesis (7, 19, and 28 weeks) employing a well-established passage-matched HaCaT cell line model of arsenic-induced cSCC. Here, we performed longitudinal differential expression analysis (miRNA and mRNA) between the different time points (7 vs 19 weeks and 19 vs 28 weeks) within unexposed and exposed groups, coupled to expression pairing and pathway analyses to differentiate the relative effects of long-term passaging and chronic iAs exposure. Data showed that 66-105 miRNA [p < .05; log2(fold change) > I1I] and 2826-4079 mRNA [p < .001; log2(fold change) > I1I] molecules were differentially expressed depending on the longitudinal comparison. Several mRNA molecules differentially expressed as a function of time, independent of iAs exposure were being targeted by miRNA molecules which were also differentially expressed in a time-dependent manner. Distinct pathways were predicted to be modulated as a function of time or iAs exposure. Some pathways were also modulated both by time and exposure. Thus, the HaCaT model can distinguish between the effects of passaging and chronic iAs exposure individually and corroborate our previously published data on effects of iAs exposure compared with unexposed passage matched HaCaT cells. In addition, this work provides a template for cell line-based longitudinal chronic exposure studies to follow for optimal efficacy.


Subject(s)
Arsenic , Carcinoma, Squamous Cell , Skin Neoplasms , Arsenic/toxicity , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/genetics , HaCaT Cells , Humans , Longitudinal Studies , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics
3.
Arch Toxicol ; 95(7): 2351-2365, 2021 07.
Article in English | MEDLINE | ID: mdl-34032870

ABSTRACT

Chronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expression of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Differentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation of human keratinocytes.


Subject(s)
Arsenic , Carcinoma, Squamous Cell , MicroRNAs , Skin Neoplasms , Arsenic/toxicity , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Culture Techniques , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/pathology
4.
Toxicol Appl Pharmacol ; 378: 114614, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31176655

ABSTRACT

The mechanism of arsenic-induced skin carcinogenesis is not yet fully understood. Chromosomal instability contributes to aneuploidy and is a driving force in carcinogenesis. Arsenic causes mitotic arrest and induces aneuploidy. hsa-miR-186 overexpression is associated with metastatic cancers as well as arsenic-induced squamous cell carcinoma and is reported to target several mitotic regulators. Decreased levels of these proteins can dysregulate chromatid segregation contributing to aneuploidy. This work investigates the potential aneuploidogenic role of hsa-miR-186 in arsenic carcinogenesis. Clones of immortalized human keratinocytes (HaCaT) stably transfected with a hsa-miR-186 expression or empty vector were isolated. Three clones with high and low hsa-miR-186 expression determined by RT-qPCR were selected for further analysis and cultured with 0 or 100 nM NaAsO2 for 8 weeks. Analysis of mitoses revealed that chromosome number and structural abnormalities increased in cells overexpressing hsa-miR-186 and were further increased by arsenite exposure. Double minutes were the dominant structural aberrations. The peak number of chromosomes also increased. Cells with >220 to >270 chromosomes appeared after 2 months in hsa-miR-186 overexpressing cells, indicating multiple rounds of endomitosis had occurred. The fraction of cells with increased chromosome number or structural abnormalities did not increase in passage matched control cells. Levels of selected target proteins were determined by western blot. Expression of BUB1, a predicted hsa-miR-186 target was suppressed in hsa-miR-186 overexpressing clones, but increased with arsenite exposure. CDC27 remained constant under all conditions. These results suggest that overexpression of miR-186 in arsenic exposed tissues likely induces aneuploidy contributing to arsenic-induced carcinogenesis.


Subject(s)
Arsenic/adverse effects , Arsenites/adverse effects , Chromosomal Instability/genetics , Keratinocytes/drug effects , MicroRNAs/genetics , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line , Humans
5.
PLoS One ; 13(8): e0202579, 2018.
Article in English | MEDLINE | ID: mdl-30114287

ABSTRACT

Arsenic, a naturally occurring element, contaminates the drinking water of over 200 million people globally. Chronic arsenic exposure causes multiple cancers including those originating from skin, lung and bladder, and is associated with liver, kidney, and prostate cancers. Skin is the primary target organ for arsenic toxicity; chronic toxicity initially manifests as non-malignant hyperkeratoses (HK) and subsequently advances to malignant lesions, including squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In this study, we evaluate the miRNA expression profiles of premalignant (3 HK) and malignant (3 BCC and 3 SCC) skin lesions from individuals chronically exposed to high levels of arsenic (59-172 ppb) in their drinking water in West Bengal, India. The lesions were histologically complex requiring histopathologic identification of keratinocytes to be isolated for RNA analyses. Keratinocytes were harvested using Laser Capture Microdissection and miRNA expression profiles were determined using TaqMan® Array Human MiRNA A Card v2.0. Thirty-five miRNAs were differentially expressed among the three lesion types analyzed. Two miRNAs (miR-425-5p and miR-433) were induced in both BCC and SCC relative to HK indicating their association with malignancy. Two other miRNAs (miR-184 and miR-576-3p) were induced in SCC relative to both BCC and HK suggesting selective induction in tumors capable of metastasis. Six miRNAs (miR-29c, miR-381, miR-452, miR-487b, miR-494 and miR-590-5p) were selectively suppressed in BCC relative to both SCC and HK. In conclusion, the differential miRNA expression was both phenotype- and stage-related. These miRNAs are potential biomarkers and may serve as therapy targets for arsenic-induced internal tumors.


Subject(s)
Carcinoma, Basal Cell/genetics , Carcinoma, Squamous Cell/genetics , MicroRNAs/genetics , Skin Neoplasms/genetics , Adult , Arsenic/adverse effects , Carcinoma, Basal Cell/chemically induced , Carcinoma, Basal Cell/pathology , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/pathology , Drinking Water/adverse effects , Gene Expression Regulation, Neoplastic , Humans , India/epidemiology , Keratinocytes/pathology , Male , Middle Aged , Precancerous Conditions/chemically induced , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Skin Neoplasms/chemically induced , Skin Neoplasms/pathology
6.
Toxicol Sci ; 165(2): 284-290, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29846715

ABSTRACT

Arsenic is a toxic metalloid widely present in the earth's crust, and is a proven human carcinogen. Chronic arsenic exposure mainly through drinking water causes skin, lung, and urinary bladder cancers, and is associated with liver, prostate, and kidney cancers, cardiovascular and neurological disorders, and diabetes. Several modes of action have been suggested in arsenic carcinogenesis. However, the molecular etiology of arsenic-induced cancer remains unclear. Recent evidence clearly indicates that gene expression modifications induced by arsenic may involve epigenetic alterations, including miRNA dysregulation. Many miRNAs have been implicated in different human cancers as a consequence of losses and or gains of miRNA function that contribute to cancer development. Progress in identifying miRNA dysregulation induced by arsenic has been made using different approaches and models. The present review discusses the recent data regarding dysregulated expression of miRNA in arsenic-induced malignant transformation in vitro, gaps in current understanding and deficiencies in current models for arsenic-induced carcinogenesis, and future directions of research that would improve our knowledge regarding the mechanisms involved in arsenic-induced carcinogenesis.


Subject(s)
Arsenic/toxicity , Carcinogenesis/drug effects , MicroRNAs/genetics , Neoplasms/chemically induced , Water Pollutants, Chemical/toxicity , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Epigenesis, Genetic/drug effects , Humans , Neoplasms/genetics
7.
Toxicol Sci ; 162(2): 645-654, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29319823

ABSTRACT

Arsenic is a widely distributed toxic natural element. Chronic arsenic ingestion causes several cancers, especially skin cancer. Arsenic-induced cancer mechanisms are not well defined, but several studies indicate that mutation is not the driving force and that microRNA expression changes play a role. Chronic low arsenite exposure malignantly transforms immortalized human keratinocytes (HaCaT), serving as a model for arsenic-induced skin carcinogenesis. Early changes in miRNA expression in HaCaT cells chronically exposed to arsenite will reveal early steps in transformation. HaCaT cells were maintained with 0/100 nM NaAsO2 for 3 and 7 weeks. Total RNA was purified. miRNA and mRNA expression was assayed using Affymetrix microarrays. Targets of differentially expressed miRNAs were collected from TargetScan 6.2, intersected with differentially expressed mRNAs using Partek Genomic Suite software, and mapped to their pathways using MetaCore software. MDM2, HMGB1 and TP53 mRNA, and protein levels were assayed by RT-qPCR and Western blot. Numerous miRNAs and mRNAs involved in carcinogenesis pathways in other systems were differentially expressed at 3 and 7 weeks. A TP53 regulatory network including MDM2 and HMGB1 was predicted by the miRNA and mRNA networks. Total TP53 and TP53-S15-phosphorylation were induced. However, TP53-K382-hypoacetylation suggested that the induced TP53 is inactive in arsenic exposed cells. Our data provide strong evidence that early changes in miRNAs and target mRNAs may contribute to arsenic-induced carcinogenesis.


Subject(s)
Arsenites/toxicity , Carcinogens, Environmental/toxicity , Cell Transformation, Neoplastic/drug effects , Keratinocytes/drug effects , MicroRNAs/genetics , RNA, Messenger/genetics , Tumor Suppressor Protein p53/metabolism , Acetylation , Cell Line , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Phosphorylation
8.
Toxicol Sci ; 162(2): 622-634, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29329451

ABSTRACT

The purpose of this study is to identify an environmentally relevant shared receptor target for endocrine and metabolism disrupting chemical pollutants. A feature of the tested chemicals was that they induced Cyp2b10 in vivo implicating activation of the constitutive androstane receptor (CAR). Recent studies suggest that these compounds could be indirect CAR activators via epidermal growth factor receptor (EGFR) inhibition. Assays included a CAR activity reporter assay, EGF endocytosis assay, and EGFR phosphorylation assay. Docking simulations were used to identify putative binding sites for environmental chemicals on the EGFR. Whole-weight and lipid-adjusted serum mean pollutant exposures were determined using data from the National Health and Examination Survey (NHANES) and compared with the IC50 values determined in vitro. Chlordane, trans-nonachlor, PCB-126, PCB-153, and atrazine were the most potent EGFR inhibitors tested. PCB-126, PCB-153, and trans-nonachlor appeared to be competitive EGFR antagonists as they displaced bound EGF from EGFR. However, atrazine acted through a different mechanism and could be an EGFR tyrosine kinase inhibitor. EGFR inhibition relative effect potencies were determined for these compounds. In NHANES, serum concentrations of trans-nonachlor, PCB-126, and PCB-153 greatly exceeded their calculated IC50 values. A common mechanism of action through EGFR inhibition for three diverse classes of metabolic disrupting chemicals was characterized by measuring inhibition of EGFR phosphorylation and EGF-EGFR endocytosis. Based on NHANES data, EGFR inhibition may be an environmentally relevant mode of action for some PCBs, pesticides, and herbicides.


Subject(s)
Endocrine Disruptors/toxicity , ErbB Receptors/metabolism , Metabolic Networks and Pathways/drug effects , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Constitutive Androstane Receptor , Endocytosis/drug effects , Epidermal Growth Factor/metabolism , ErbB Receptors/agonists , Hep G2 Cells , Humans , Mice , Molecular Docking Simulation , Phosphorylation , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transfection
9.
Toxicol Appl Pharmacol ; 331: 130-134, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28595984

ABSTRACT

BACKGROUND: Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. METHODS: HaCaT cells were exposed to 0 or 100nM NaAsO2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. RESULTS: 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. CONCLUSIONS: Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes.


Subject(s)
Arsenites/toxicity , Cell Cycle/drug effects , Keratinocytes/drug effects , Arsenites/administration & dosage , Cell Cycle/physiology , Cell Line, Transformed , Dose-Response Relationship, Drug , Humans , Keratinocytes/physiology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
10.
Toxicol Pathol ; 43(4): 482-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25326588

ABSTRACT

BACKGROUND: Toxicant-associated fatty liver disease (TAFLD) is a recently identified form of nonalcoholic fatty liver disease (NAFLD) associated with exposure to industrial chemicals and environmental pollutants. Numerous studies have been conducted to test the association between industrial chemicals/environmental pollutants and fatty liver disease both in vivo and in vitro. OBJECTIVES: The objective of the article is to report a list of chemicals associated with TAFLD. METHODS: Two federal databases of rodent toxicology studies-Toxicological Reference Database (ToxRefDB; Environmental Protection Agency) and Chemical Effects in Biological Systems (CEBS, National Toxicology Program)-were searched for liver end points. Combined, these 2 databases archive nearly 2,000 rodent studies. Toxicant-associated steatohepatitis (TASH) descriptors including fatty change, fatty necrosis, Oil red O-positive staining, steatosis, and lipid deposition were queried. RESULTS: Using these search terms, 123 chemicals associated with fatty liver were identified. Pesticides and solvents were the most frequently identified chemicals, while polychlorinated biphenyls (PCBs)/dioxins were the most potent. About 44% of identified compounds were pesticides or their intermediates, and >10% of pesticide registration studies in ToxRefDB were associated with fatty liver. Fungicides and herbicides were more frequently associated with fatty liver than insecticides. CONCLUSION: More research on pesticides, solvents, metals, and PCBs/dioxins in NAFLD/TAFLD is warranted due to their association with liver damage.


Subject(s)
Environmental Pollutants/toxicity , Liver/drug effects , Non-alcoholic Fatty Liver Disease/chemically induced , Animals , Pesticides/toxicity , Toxicity Tests
11.
Toxicol Appl Pharmacol ; 279(3): 380-390, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24998970

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD) in epidemiologic studies. The purpose of this study was to evaluate the hepatic effects of a PCB mixture, Aroclor 1260, whose composition mimics human bioaccumulation patterns, in a mouse model of diet-induced obesity (DIO). Male C57Bl/6J mice were fed control diet or 42% high fat diet (HFD) and exposed to Aroclor 1260 (20mg/kg or 200mg/kg in corn oil) for 12weeks. A glucose tolerance test was performed; plasma/tissues were obtained at necropsy for measurements of adipocytokine levels, histology, and gene expression. Aroclor 1260 exposure was associated with decreased body fat in HFD-fed mice but had no effect on blood glucose/lipid levels. Paradoxically, Aroclor 1260+HFD co-exposed mice demonstrated increased hepatic inflammatory foci at both doses while the degree of steatosis did not change. Serum cytokines, ALT levels and hepatic expression of IL-6 and TNFα were increased only at 20mg/kg, suggesting an inhibition of pro-inflammatory cytokine production at the 200mg/kg exposure. Aroclor 1260 induced hepatic expression of cytochrome P450s including Cyp3a11 (Pregnane-Xenobiotic Receptor target) and Cyp2b10 (constitutive androstane receptor target) but Cyp2b10 inducibility was diminished with HFD-feeding. Cyp1a2 (aryl hydrocarbon Receptor target) was induced only at 200mg/kg. In summary, Aroclor 1260 worsened hepatic and systemic inflammation in DIO. The results indicated a bimodal response of PCB-diet interactions in the context of inflammation which could potentially be explained by xenobiotic receptor activation. Thus, PCB exposure may be a relevant "second hit" in the transformation of steatosis to steatohepatitis.


Subject(s)
Aroclors/toxicity , Environmental Pollutants/toxicity , Fatty Liver/chemically induced , Obesity/chemically induced , Adipokines/metabolism , Adipose Tissue/pathology , Animals , Aryl Hydrocarbon Hydroxylases/biosynthesis , Aryl Hydrocarbon Hydroxylases/genetics , Blood Glucose/metabolism , Cholesterol/metabolism , Cytochrome P-450 CYP3A/biosynthesis , Cytochrome P-450 CYP3A/genetics , Cytochrome P450 Family 2 , Diet , Fatty Liver/pathology , Gene Expression/drug effects , Glucose Tolerance Test , Inflammation/chemically induced , Inflammation/pathology , Liver/pathology , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Obesity/pathology , Real-Time Polymerase Chain Reaction , Receptors, Aryl Hydrocarbon/biosynthesis , Receptors, Aryl Hydrocarbon/genetics , Steroid Hydroxylases/biosynthesis , Steroid Hydroxylases/genetics , Toll-Like Receptor 4/biosynthesis , Toll-Like Receptor 4/genetics , Triglycerides/metabolism
12.
Toxicol Sci ; 140(2): 283-97, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24812009

ABSTRACT

Polychlorinated biphenyls (PCBs) are persistent environmental toxicants, present in 100% of U.S. adults and dose-dependently associated with obesity and non-alcoholic fatty liver disease (NAFLD). PCBs are predicted to interact with receptors previously implicated in xenobiotic/energy metabolism and NAFLD. These receptors include the aryl hydrocarbon receptor (AhR), pregnane xenobiotic receptor (PXR), constitutive androstane receptor (CAR), peroxisome proliferator-activated receptors (PPARs), liver-X-receptor (LXRα), and farnesoid-X-receptor (FXR). This study evaluates Aroclor 1260, a PCB mixture with congener composition mimicking that of human adipose tissue, and selected congeners, as potential ligands for these receptors utilizing human hepatoma-derived (HepG2) and primate-derived (COS-1) cell lines, and primary human hepatocytes. Aroclor 1260 (20 µg/ml) activated AhR, and PCB 126, a minor component, was a potent inducer. Aroclor 1260 activated PXR in a simple concentration-dependent manner at concentrations ≥10 µg/ml. Among the congeners tested, PCBs 138, 149, 151, 174, 183, 187, and 196 activated PXR. Aroclor 1260 activated CAR2 and CAR3 variants at lower concentrations and antagonize CAR2 activation by the CAR agonist, CITCO, at higher concentrations (≥20 µg/ml). Additionally, Aroclor 1260 induced CYP2B6 in primary hepatocytes. At subtoxic doses, Aroclor 1260 did not activate LXR or FXR and had no effect on LXR- or FXR-dependent induction by the agonists T0901317 or GW4064, respectively. Aroclor 1260 (20 µg/ml) suppressed PPARα activation by the agonist nafenopin, although none of the congeners tested demonstrated significant inhibition. The results suggest that Aroclor 1260 is a human AhR, PXR and CAR3 agonist, a mixed agonist/antagonist for CAR2, and an antagonist for human PPARα.


Subject(s)
Aroclors/toxicity , Base Sequence , Complex Mixtures , DNA Primers , Hep G2 Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...