Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 10032, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693156

ABSTRACT

The primary objective of the present study was to produce metal complexes of H4DAP ligand (N,N'-((pyridine-2,6-diylbis(azanediyl))bis(carbonothioyl))dibenzamide) derived from 2,6-diaminopyridine and benzoyl isothiocyanate with either ML or M2L stoichiometry. There are three distinct coordination complexes obtained with the formulas [Co(H2DAP)]·H2O, [Ni2(H2DAP)Cl2(H2O)2]·H2O, and [Cu(H4DAP)Cl2]·3H2O. The confirmation of the structures of all derivatives was achieved through the utilization of several analytical techniques, including FT-IR, UV-Vis, NMR, GC-MS, PXRD, SEM, TEM analysis, and QM calculations. Aiming to analyze various noncovalent interactions, topological methods such as QTAIM, NCI, ELF, and LOL were performed. Furthermore, the capacity of metal-ligand binding was examined by fluorescence emission spectroscopy. An in vitro investigation showed that the viability of MDA-MB-231 and HepG-2 cells was lower when exposed to the manufactured Cu2+ complex, in comparison to the normal cis-platin medication. The compounds were further evaluated for their in vitro antibacterial activity. The Ni2+ complex has shown promising activity against all tested pathogens, comparable to the reference drugs Gentamycin and Ketoconazole. Furthermore, a computational docking investigation was conducted to further examine the orientation, interaction, and conformation of the recently created compounds on the active site of the Bcl-2 protein.


Subject(s)
Cobalt , Coordination Complexes , Copper , Isothiocyanates , Molecular Docking Simulation , Nickel , Nickel/chemistry , Copper/chemistry , Humans , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Cobalt/chemistry , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
2.
ACS Omega ; 9(4): 4870-4880, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38313534

ABSTRACT

The discharge of congo red dye into water sources by factories has been associated with a range of health concerns, such as cancer, redness, skin irritation, and allergic reactions. As a result, this research focused on the cost-effective and straightforward production of MgAl2O4 nanoparticles by using the Pechini sol-gel process. Subsequently, these nanoparticles were employed for the successful photocatalytic decomposition of congo red dye. Moreover, extensive characterization of the fabricated MgAl2O4 nanoparticles was conducted through diverse methodologies, which included Fourier-transform infrared spectroscopy, ultraviolet-visible spectrophotometry, high-resolution transmission electron microscopy (HR-TEM), field-emission scanning electron microscopy (FE-SEM), and powder X-ray diffraction (XRD). Furthermore, the XRD analysis disclosed that the average crystal size of the produced MgAl2O4 nanoparticles is 10.36 nm, and their optical energy gap was determined to be 3.71 eV. The FE-SEM examination unveiled a combination of spherical and disorganized structures with a 0.14 µm average grain size. HR-TEM analysis, in turn, revealed that the fabricated MgAl2O4 nanoparticles were composed of minuscule spherical particles with an average diameter of 8.75 nm. The maximum degradation of 50 mL of congo red dye at a concentration of 25 mg/L reached 99.27% within 80 min at a pH of 3. Additionally, the findings confirmed the consistent decomposition activity toward congo red dye even after four cycles, thereby validating the effectiveness and reusability of the MgAl2O4 nanoparticles that were developed in this study.

3.
Discov Nano ; 18(1): 70, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37382736

ABSTRACT

In the water purification field, heavy metal pollution is a problem that causes severe risk aversion. This study aimed to examine the disposal of cadmium and copper ions from aqueous solutions by a novel Fe3O4/analcime nanocomposite. A field emission scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction were used to characterize the synthesized products. The FE-SEM images showed that the analcime and Fe3O4 samples consist of polyhedral and quasi-spherical shapes with average diameters of 923.28 and 28.57 nm, respectively. Besides, the Fe3O4/analcime nanocomposite consists of polyhedral and quasi-spherical shapes with average diameters of 1100.00 nm. The greatest uptake capability of the Fe3O4/analcime nanocomposite toward the copper and cadmium ions is 176.68 and 203.67 mg/g, respectively. The pseudo-second-order kinetic model and Langmuir equilibrium isotherm best describe the uptake of copper and cadmium ions using the Fe3O4/analcime nanocomposite. The uptake of copper and cadmium ions using the Fe3O4/analcime nanocomposite is exothermic and chemical in nature.

4.
Drug Dev Ind Pharm ; 49(3): 271-280, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37067846

ABSTRACT

BACKGROUND: Breast cancer conventional therapeutics are effective; however, they encounter some limitations including multidrug resistance, the presence of pharmacological barriers, and non-selectivity which hinder their optimal therapeutic efficacy. AIM: Overcoming such drawbacks necessitates the development of efficient drug vehicles including lipid-based nanoparticles. This study aimed to quantitatively investigate in-vitro the synergistic therapeutic effect of the novel combination of capsaicin and 5-fluorouracil (5-FU) encapsulated in lipid nanocapsules (LNCs). METHOD: To this end, thorough physicochemical and in-vitro assessments on the breast cancer cell line (MCF-7) were done. The drug-loaded LNCs were characterized using DLS, TEM imaging, stability study, and in-vitro release study. Furthermore, the biological activity of the prepared LNCs was assessed by implementing comparative cytotoxicity studies as well as apoptosis, and cell cycle flow cytometric analyses. RESULTS: The developed nanoformulations were monodisperse with average particle size (PS) of 31, 43.8, and 127.3 nm for empty LNCs, Cap-LNCs, and 5-FU-LNCs, respectively, and with a surface charge of -35.4, -21.7 and -31.4 mV, respectively, reflecting good physical stability. The TEM micrographs revealed the spherical morphology of the drugs-loaded LNCs with comparable PS to that obtained by DLS. on the other hand, all the biological assessments confirmed the superior antiproliferative effect of the combined drug-loaded LNCs over their free drug counterparts. CONCLUSION: Intriguingly, the study findings highlighted the potential synergistic activity of the drugs (capsaicin and 5-FU) and the extensive enhancement of their biological activity through incorporation into LNCs. Such promising results will pave the way to further novel combined nanoformulation in preclinical and clinical studies on breast cancer patients.


Subject(s)
Breast Neoplasms , Nanocapsules , Humans , Female , Nanocapsules/chemistry , Breast Neoplasms/drug therapy , Capsaicin/pharmacology , Fluorouracil/pharmacology , Lipids/chemistry
5.
Int J Biol Macromol ; 225: 503-517, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36403763

ABSTRACT

Breast carcinoma is considered one of the most invasive and life-threatening malignancies in females. Mastectomy, radiation therapy, hormone therapy and chemotherapy are the most common treatment choices for breast cancer. Doxorubicin (DOX) is one of the most regularly utilized medications in breast cancer protocols. However, DOX has showed numerous side effects including lethal cardiotoxicity. This study aims to fortify DOX cytotoxicity and lowering its side effects via its combining with the antidiabetic metformin (MET) as an adjuvant therapy, along with its effective delivery using natural platelet-rich plasma (PRP), and newly-developed PRP-mimicking nanocapsules (NCs). The PRP-mimicking NCs were fabricated via layer-by-layer (LBL) deposition of oppositely charged biodegradable and biocompatible chitosan (CS) and alginate (ALG) on a core of synthesized polystyrene nanoparticles (PS NPs) followed by removal of the PS core. Both natural PRP and PRP-mimicking NCs were loaded with DOX and MET adjuvant therapy, followed by their physicochemical characterizations including DLS, FTIR, DSC, and morphological evaluation using TEM. In-vitro drug release studies, cytotoxicity, apoptosis/necrosis, and cell cycle analysis were conducted using MCF-7 breast cancer cells. Also, an in-vivo assessment was carried out using EAC-bearing balb/c mice animal model to evaluate the effect of DOX/MET-loaded natural PRP and PRP-mimicked NCs on tumor weight, volume and growth biomarkers in addition to analyzing the immunohistopathology of the treated tissues. Results confirmed the development of CS/ALG-based PRP-mimicking NCs with a higher loading capacity of both drugs (DOX and MET) and smaller size (259.7 ± 19.3 nm) than natural PRP (489 ± 20.827 nm). Both in-vitro and in-vivo studies were in agreement and confirmed that MET synergized the anticancer activity of DOX against breast cancer. Besides, the developed LBL NCs successfully mimicked the PRP in improving the loaded drugs biological efficiency more than free drugs.


Subject(s)
Chitosan , Nanocapsules , Nanoparticles , Neoplasms , Mice , Animals , Female , Nanocapsules/chemistry , Chitosan/chemistry , Alginates/chemistry , Mastectomy , Doxorubicin/chemistry , Nanoparticles/chemistry
6.
Molecules ; 27(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36500307

ABSTRACT

The novel Aerva javanica absorbent was applied for the removal of thirteen selected metal ions from a distilled water solution of each metal by the batch adsorption method. The optimization remediation parameters of the metal ions for the batch adsorption approach were developed, which were the initial concentrations (60 ppm), contact time (60 min) and pH (7). The basic properties of metal ion affected the adsorption results; therefore, 21 properties of metal ions were selected, which are called "descriptors". The most significant descriptors were selected that were vital for the adsorption results, such as covalent index, polarizability and ion charge. The developed model equation by the descriptors provided more than 80% accuracy in the predicted results. Furthermore, Freundlich and Langmuir adsorption models were also applied on the results. Constants of the Freundlich and Langmuir models were also used for model generation, and the results revealed the importance of a covalent index for the removal phenomenon of metal ions. The current study provided a suitable Ion Character Property Relationship (IC-PR) for the removal of metal ions, and future predictions can be achieved on the proposed adsorbent with significant accuracy. The ecofriendly and cost effective Aerva javanica absorbent in the batch experimental model of the current study predicted that this novel absorbent can be used for the removal of a wide spectrum of heavy metal ions from different sources of waste waters.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Kinetics , Hydrogen-Ion Concentration , Metals, Heavy/chemistry , Adsorption , Ions , Water Pollutants, Chemical/chemistry
7.
Nanomaterials (Basel) ; 12(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36432277

ABSTRACT

Photocatalytic degradation has been suggested to be a cheap and efficient way to dispose of organic pollutants, such as dyes. Therefore, our research team strives to produce nanophotocatalysts in a simple and inexpensive way. In this work, the Pechini sol-gel technique was employed for the facile synthesis of Mn0.5Zn0.5Fe2O4/Fe2O3 and Fe0.5Mn0.5Co2O4/Fe2O3 as mixed metal oxide nanoparticles for the efficient photocatalytic degradation of Rhodamine B and Congo Red dyes. XRD, FT-IR, a N2 adsorption/desorption analyzer, EDS, FE-SEM, and an UV-Vis diffuse reflectance spectrophotometer were used to characterize the produced samples. The XRD patterns revealed that the average crystallite size of the Fe0.5Mn0.5Co2O4/Fe2O3 and Mn0.5Zn0.5Fe2O4/Fe2O3 samples is 90.25 and 80.62 nm, respectively. The FE-SEM images revealed that the Fe0.5Mn0.5Co2O4/Fe2O3 sample consists of cubic and irregular shapes with an average diameter of 1.71 µm. Additionally, the Mn0.5Zn0.5Fe2O4/Fe2O3 sample consists of spherical shapes with an average diameter of 0.26 µm. The energy gaps of the Fe0.5Mn0.5Co2O4/Fe2O3 and Mn0.5Zn0.5Fe2O4/Fe2O3 samples are 3.50 and 4.3 eV and 3.52 and 4.20 eV, respectively. In the presence of hydrogen peroxide, the complete degradation of 100 mL of 20 mg/L of Rhodamine B and Congo Red dyes occurred at pH = 8 and 3, respectively, within 50 min, using 0.1 g of the synthesized samples.

8.
Molecules ; 27(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36235210

ABSTRACT

The present work was aimed at studying the biosorption of two important heavy metals, viz. Pb and Cr, using defatted seed residue of Cucumis melo as biosorbent. As this study for the biosorption of the selected biosorbent is being carried out for the first time, optimization of the% sorption was carried out with the help of Taguchi method. Three most influential experimental factors were taken into account for this purpose, including the amount of sorbent, amount of sorbate and shaking time. For Pb, maximum% sorption was found to be 94.1%, using 2 g of sorbent and 5 ppm of sorbate after 2 h of shaking. Similarly, for Cr, maximum% sorption was 92.5% using 2 g of sorbent, 10 ppm of sorbate and 3 h of shaking. For Pb, the highest% contribution, which was determined by ANOVA, was given by the amount of sorbate (54.7%) followed by the amount of sorbent (38.8%) and the least contribution was given by the shaking time (6.47%). Similarly, for Cr, the highest% contribution, which was determined by ANOVA, was given by the amount of sorbate (75%) followed by the amount of sorbent (16%) and the least contribution was given by the shaking time (8.65%). Kinetic and isothermal studies were also performed to understand the nature of adsorption mechanism. For this purpose, linear and non-linear forms of three sorption isotherms were employed including Freundlich, Langmuir and Dubnin-Radushkevich isotherm. From these observations, it can be concluded that the defatted seed residue of Cucumis melo can be regarded as a novel, renewable, green and cost-effective biosorbent for removal of heavy metals from wastewater.


Subject(s)
Cucumis melo , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Lead , Metals, Heavy/analysis , Seeds/chemistry , Wastewater , Water Pollutants, Chemical/analysis
9.
ACS Omega ; 7(20): 17483-17491, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35647427

ABSTRACT

A modified metal-organic framework (MOF) named Al-MIL-53-N=SA-Br was synthesized via a Schiff-base reaction between the MOFs (Al-MIL-53-NH2) and 5-bromo salicylaldehyde. The robust functionalized Al-MIL-53-N=SA-Br was used as a novel spectrophotometric sensor for detecting Hg2+, Co2+, and Al3+ ions. In a wide range of concentrations, the absorption spectral intensity of Al-MIL-53-N=SA-Br increased linearly upon increasing the concentration of Hg2+, Co2+, and Al3+ ions. The limit of detection (LOD) of the proposed Al-MIL-53-N=SA-Br sensor reached 1.52 ppm of Hg2+ ion (7.56 × 10-9 M). Therefore, this study introduces a novel ratiometric Hg2+, Co2+, and Al3+ ions chemosensor. Simple treatment using thiourea or ethylenediaminetetraacetic acid can remove the metal ions from the used sensor and use it many times with a high efficiency. In addition, the Al-MIL-53-N=SA-Br sensor has a high adsorption capacity for these metal ions. The design of the robust Al-MIL-53-N=SA-Br sensor provided high stability, reproducibility, selectivity, high sensitivity, and a facile sensing design. Furthermore, the good absorption spectral stability of Al-MIL-53-N=SA-Br in aqueous media, the broad linear in sensing, and the low LOD of the Hg2+, Co2+, and Al3+ ions show its high potential in determining these ions in real water.

10.
Int J Biol Macromol ; 120(Pt B): 2271-2278, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30144547

ABSTRACT

A novel high-performance supercapacitor was fabricated using spinal (nickel ferrite) nanoparticles uniformly implanted into nitrogen-doped carbon matrix. The nanocomposite was fabricated with bimetallic polymer complexes for the first time. The fabricated nanocomposite was characterized using FTIR, TGA, Raman, XRD, BET, XPS, SEM and TEM technique. The nanocomposite used as the electrode material for assembling electrodes for supercapacitor over nickel foam, and show an excellent specific capacitance of 958.33 F g-1 at a current density of 5.0 A g-1 in a two-electrode system, using 6 M KOH solution as electrolyte. The energy density was observed 43.75 Wh kg-1 at a power density of 516.25 W kg-1, moreover, at a high power density of 882 W kg-1, it still attains the energy density of 26.25 W h kg-1 and, supports the well-known Ragone plot. The high cycling stability (9.75% loss over 6000 cycles) has been demonstrated and shows excellent stability. The results manifest the great potential of this nanocomposite for next-generation high-power applications. Thus, an advanced electrode material for high-performance supercapacitor was successfully assembled first time by a simple and scalable synthesis route.


Subject(s)
Chitosan/chemistry , Electric Capacitance , Nanocomposites/chemistry , Aniline Compounds/chemistry , Carbon/chemistry , Electrochemistry , Electrodes , Ferric Compounds/chemistry , Nickel/chemistry , Nitrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...