Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 24(1): 94, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431613

ABSTRACT

BACKGROUND: Recent investigations have reported the benefits of using a tyrosine kinase inhibitor, dasatinib (DA), as well as programmed death-ligand 1 (PD-L1) inhibitors in the management of several solid tumors, including breast cancer. Nevertheless, the outcome of the combination of these inhibitors on HER2-positive breast cancer is not explored yet. METHODS: Herein, we investigated the impact of DA and PD-L1 inhibitor (BMS-202) combination on HER2-positive breast cancer cell lines, SKBR3 and ZR75. RESULTS: Our data reveal that the combination significantly inhibits cell viability of both cancer cell lines as compared to monotreatment. Moreover, the combination inhibits epithelial-mesenchymal transition (EMT) progression and reduces cancer cell invasion by restoring E-cadherin and ß-catenin expressions and loss of vimentin, major biomarkers of EMT. Additionally, the combination reduces the colony formation of both cell lines in comparison with their matched control. Also, the combination considerably inhibits the angiogenesis of the chorioallantoic membrane model compared with monotreatment. Molecular pathway analysis of treated cells shows that this combination blocks HER2, AKT, ß-catenin, and JNK1/2/3 activities. CONCLUSION: Our findings implicate that a combination of DA and BMS-202 could have a significant impact on the management of HER2-positive breast cancer.

2.
Intervirology ; 65(4): 188-194, 2022.
Article in English | MEDLINE | ID: mdl-35640537

ABSTRACT

INTRODUCTION: Human papillomaviruses (HPVs), Epstein-Barr virus (EBV), and mouse mammary tumor virus-like virus (MMTV-like virus) can be present and contribute to breast cancer development and progression. However, the role of these oncoviruses and their crosstalk in breast cancer is still unclear. METHODS: We explored the co-presence of high-risk HPVs, EBV, and MMTV-like virus in 74 breast cancer samples from Qatar using PCR. RESULTS: We found the presence of HPV and EBV in 65% and 49% of our cancer sample cohorts; 47% of the samples are positive for both oncoviruses. The MMTV-like virus alone was detected in 15% of the samples with no significant association with clinicopathological features. The three oncoviruses were co-present in 14% of the cases; no significant association was noted between the co-presence of these viruses and the clinicopathological features. CONCLUSION: Despite the presence of the oncoviruses, additional studies are necessary to understand their interactions in human breast carcinogenesis.


Subject(s)
Alphapapillomavirus , Breast Neoplasms , Epstein-Barr Virus Infections , Mice , Animals , Humans , Female , Herpesvirus 4, Human/genetics , Mammary Tumor Virus, Mouse/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Incidence , Qatar/epidemiology , Papillomaviridae/genetics
3.
Front Nutr ; 9: 871667, 2022.
Article in English | MEDLINE | ID: mdl-35369073

ABSTRACT

Elaeagnus angustifolia (EA) is used as an alternative medicine in the Middle East to manage numerous human diseases. We recently reported that EA flower extract inhibits cell proliferation and invasion of human oral and HER2-positive breast cancer cells. Nevertheless, the outcome of EA extract on triple-negative breast cancer (TNBC) cells has not been explored yet. We herein investigate the effect of the aqueous EA extract (100 and 200 µl/ml) on two TNBC cell lines (MDA-MB-231 and MDA-MB-436) for 48 h and explore its underlying molecular pathways. Our data revealed that EA extract suppresses cell proliferation by approximately 50% and alters cell-cycle progression of these two cancer cell lines. Additionally, EA extract induces cell apoptosis by 40-50%, accompanied by the upregulation of pro-apoptotic markers (Bax and cleaved caspase-8) and downregulation of the anti-apoptotic marker, Bcl-2. Moreover, EA extract inhibits colony formation compared to their matched control. More significantly, the molecular pathway analysis of EA-treated cells revealed that EA extract enhances p53 expression, while inhibiting the expression of total and phosphorylated Signal Transducer and Activator Of Transcription 3 (STAT3) in both cell lines, suggesting p53 and STAT3 are the main key players behind the biological events provoked by the extract in TNBC cells. Our findings implicate that EA flower extract may possess an important potential as an anticancer drug against TNBC.

4.
Hum Vaccin Immunother ; 17(11): 4457-4466, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34623225

ABSTRACT

Breast cancer, the most frequent disease amongst women worldwide, accounts for the highest cancer-related mortality rate. Triple-negative breast cancer (TNBC) subtype encompasses ~15% of all breast cancers and lack estrogen, progesterone, and HER2 receptors. Although risk factors for breast cancer are well-known, factors underpinning breast cancer onset and progression remain unknown. Recent studies suggest the plausible role of oncoviruses including human papillomaviruses (HPVs), Epstein-Barr virus (EBV), and mouse mammary tumor virus (MMTV) in breast cancer pathogenesis. However, the role of these oncoviruses in TNBC is still unclear. In the current study, we explored the status of high-risk HPVs, EBV, and MMTV in a well-defined TNBC cohort from Croatia in comparison to 16 normal/non TNBC samples (controls) using polymerase chain reaction assay. We found high-risk HPVs and EBV present in 37/70 (53%) and 25/70 (36%) of the cases, respectively. The most common HPV types are 52, 45, 31, 58 and 68. We found 16% of the samples positive for co-presence of high-risk HPVs and EBV. Moreover, our data revealed that 5/70 (7%) samples are positive for MMTV. In addition, only 2/70 (3%) samples had co-presence of HPVs, EBV, and MMTV without any significant association with the clinicopathological variables. While, 6/16 (37.5%) controls were positive for HPV (p = .4), EBV was absent in all controls (0/16, 0%) (p = .01). In addition, we did not find the co-presence of the oncoviruses in the controls (p > .05). Nevertheless, further investigations are essential to understand the underlying mechanisms of multiple-oncogenic viruses' interaction in breast carcinogenesis, especially TNBC.


Subject(s)
Breast Neoplasms , Epstein-Barr Virus Infections , Triple Negative Breast Neoplasms , Animals , Female , Herpesvirus 4, Human/genetics , Humans , Mammary Tumor Virus, Mouse/genetics , Mice , Papillomaviridae/genetics , Triple Negative Breast Neoplasms/epidemiology
5.
Int J Mol Sci ; 22(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34502529

ABSTRACT

Natural chalcones possess antitumor properties and play a role as inducers of apoptosis, antioxidants and cytotoxic compounds. We recently reported that novel nitrogen chalcone-based compounds, which were generated in our lab, have specific effects on triple-negative breast cancer cells. However, the outcome of these two new compounds on human epidermal growth factor receptor 2 (HER2)-positive breast cancer remains nascent. Thus, we herein investigated the effects of these compounds (DK-13 and DK-14) on two HER2-positive breast cancer cell lines, SKBR3 and ZR75. Our data revealed that these compounds inhibit cell proliferation, deregulate cell-cycle progression and significantly induce cell apoptosis in both cell lines. Furthermore, the two chalcone compounds cause a significant reduction in the cell invasion ability of SKBR3 and ZR75 cancer cells. In parallel, we found that DK-13 and DK-14 inhibit colony formation of both cell lines in comparison to their matched controls. On the other hand, we noticed that these two compounds can inhibit angiogenesis in the chorioallantoic membrane model. The molecular pathway analysis of chalcone compounds exposed cells revealed that these compounds inhibit the expression of both JNK1/2/3 and ERK1/2, the major plausible molecular pathways behind these events. Our findings implicate that DK-13 and DK-14 possess effective chemotherapeutic outcomes against HER2-positive breast cancer via the ERK1/2 and JNK1/2/3 signaling pathways.


Subject(s)
Apoptosis/drug effects , Chalcones/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Receptor, ErbB-2/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Chalcones/chemistry , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Nitrogen/chemistry
6.
Molecules ; 25(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947764

ABSTRACT

Elaeagnus angustifolia (EA) is a medicinal plant used for treating several human diseases in the Middle East. Meanwhile, the outcome of EA extract on HER2-positive breast cancer remains nascent. Thus, we herein investigated the effects of the aqueous EA extract obtained from the flowers of EA on two HER2-positive breast cancer cell lines, SKBR3 and ZR75-1. Our data revealed that EA extract inhibits cell proliferation and deregulates cell-cycle progression of these two cancer cell lines. EA extract also prevents the progression of epithelial-mesenchymal transition (EMT), an important event for cancer invasion and metastasis; this is accompanied by upregulations of E-cadherin and ß-catenin, in addition to downregulations of vimentin and fascin, which are major markers of EMT. Thus, EA extract causes a drastic decrease in cell invasion ability of SKBR3 and ZR75-1 cancer cells. Additionally, we found that EA extract inhibits colony formation of both cell lines in comparison with their matched control. The molecular pathway analysis of HER2 and JNK1/2/3 of EA extract exposed cells revealed that it can block HER2 and JNK1/2/3 activities, which could be the major molecular pathway behind these events. Our findings implicate that EA extract may possess chemo-preventive effects against HER2-positive breast cancer via HER2 inactivation and specifically JNK1/2/3 signaling pathways.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Elaeagnaceae/chemistry , Epithelial-Mesenchymal Transition/drug effects , Plant Extracts/chemistry , Receptor, ErbB-2/metabolism , Signal Transduction/drug effects , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cadherins/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Down-Regulation/drug effects , Elaeagnaceae/metabolism , Female , Flowers/chemistry , Flowers/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Plant Extracts/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Up-Regulation/drug effects , Vimentin/metabolism , beta Catenin/metabolism
7.
Front Oncol ; 10: 580345, 2020.
Article in English | MEDLINE | ID: mdl-33425733

ABSTRACT

Breast and cervical cancers comprise 50% of all cancers during pregnancy. In particular, gestational breast cancer is considered one of the most aggressive types of cancers, which is a rare but fatal disease. However, the incidence of this type of cancer is increasing over the years and its prevalence is expected to rise further as more women delay childbearing. Breast cancer occurring after pregnancy is generally triple negative with specific characterizations of a poorer prognosis and outcome. On the other hand, it has been pointed out that this cancer is associated with a specific group of genes which can be used as precise targets to manage this deadly disease. Indeed, combination therapies consisting of gene-based agents with other cancer therapeutics is presently under consideration. We herein review recent progress in understanding the development of breast cancer during pregnancy and their unique subtype of triple negative which is the hallmark of this type of breast cancer.

8.
Cancers (Basel) ; 11(5)2019 May 10.
Article in English | MEDLINE | ID: mdl-31083383

ABSTRACT

Breast cancer is the second most common cause of cancer-related deaths among women worldwide. It is a heterogeneous disease with four major molecular subtypes. One of the subtypes, human epidermal growth factor receptor 2 (HER2)-enriched (HER2-positive) is characterized by the absence of estrogen and progesterone receptors and overexpression of HER2 receptor, and accounts for 15-20% of all breast cancers. Despite the anti-HER2 and cytotoxic chemotherapy, HER2 subtype is an aggressive disease with significant mortality. Recent advances in molecular biology techniques, including gene expression profiling, proteomics, and microRNA analysis, have been extensively used to explore the underlying mechanisms behind human breast carcinogenesis and metastasis including HER2-positive breast cancer, paving the way for developing new targeted therapies. This review focuses on recent advances on gene expression and miRNA status in HER2-positive breast cancer.

9.
Front Oncol ; 8: 111, 2018.
Article in English | MEDLINE | ID: mdl-29765906

ABSTRACT

Oncoviruses are implicated in around 20% of all human cancers including both solid and non-solid malignancies. Epstein-Barr virus (EBV) and human papillomaviruses (HPVs) are the most common oncoviruses worldwide. Currently, it is well established that onco-proteins of EBV (LMP1, LMP2A, and EBNA1) and high-risk HPVs (E5 and E6/E7) play an important role in the initiation and/or progression of several human carcinomas, including cervical, oral, and breast. More significantly, it has been recently pointed out that viral onco-proteins of EBV and high-risk HPVs can be co-present and consequently cooperate to initiate and/or amplify epithelial-mesenchymal transition (EMT), which is the hallmark of cancer progression and metastasis. This could occur by ß-catenin, JAK/STAT/SRC, PI3k/Akt/mTOR, and/or RAS/MEK/ERK signaling pathways, which onco-proteins of EBV and HPVs share. This review presents the most recent advances related to EBV and high-risk HPVs onco-proteins interactions and their roles in the progression of human carcinomas especially oral and breast via the initiation of EMT.

SELECTION OF CITATIONS
SEARCH DETAIL
...