Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pak J Biol Sci ; 25(6): 531-536, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36098188

ABSTRACT

<b>Background and Objectives:</b> Bacterial cellulose (BC) is a microbial extracellular biopolymer formed by microbial strains like <i>Gluconacetobacter xylinus</i>. The objective of this study was to determine the antioxidant and anticoagulant of a microbial nano cellulose-ZnO-Ag (CNCs) composite and its components separately. <b>Materials and Methods:</b> Three components were used for nano cellulose-ZnO-Ag composite synthesis, Ag-nanoparticles, ZnO-nanoparticles and BC. The DPPH method was used to calculate the scavenging of free radical behaviour of four different composite samples. <b>Results:</b> Results of silver nanoparticles were found to have the highest antioxidant activity with IC<sub>50</sub> 65 µg mL<sup></sup><sup>1</sup>, followed by CNCs-ZnO-Ag composite (IC<sub>50</sub> 88.98 µg mL<sup></sup><sup>1</sup>) but ZnONPs IC<sub>50</sub> was 263 µg mL<sup></sup><sup>1</sup> and BC (IC<sub>50</sub> 955 µg mL<sup></sup><sup>1</sup>). The CNCs-ZnO-Ag composite, BC and AgNPs at 25 µg mL<sup></sup><sup>1</sup> had clotting times that were nearly identical to the control. The APTT increased to 56 Sec at 75 µg mL<sup></sup><sup>1</sup> of CNCs-ZnO-Ag composite related to control that recorded 33 Sec. <b>Conclusion:</b> Bacterial cellulose acquired new activity in nano form and also when conjugated with nanoparticles. The CNCs-ZnO-Ag composite is ready for pharmaceutical application as an antioxidant and anticoagulant after <i>in vivo</i> study.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Anticoagulants/pharmacology , Antioxidants/pharmacology , Bacteria , Cellulose , Silver
2.
Saudi Pharm J ; 26(8): 1089-1097, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30532629

ABSTRACT

In recent years, the decreased efficacy of existing antibiotics toward management of emergent drug-resistant strains has necessitated the search for novel antibiotics from natural products. In this regard, Bacillus sp is well known for producing variety of secondary metabolites of potential use. Therefore, we performed an investigation to isolate and identify Bacillus sp from oral cavity for production of novel antimicrobial compounds. We extracted, purified, and identified a novel bioactive compound by B. megaterium (KC246043.1). The optimal production of compound was observed on de Man Rogosa and Sharpe broth by incubating at 37 °C, and pH 7.0 for 4 days. The bioactive compound was extracted by using n-butanol (2:1 v/v), purified on TLC plates with detection at Rf 7.8 cm; further characterized and identified as a cyclic ploypeptide sharing structural similarity with bacitracin. Minimum inhibitory concentration of bioactive compound was found to be 0.25, 0.5, 1.0, 3.125 and 6.25 µg/ml against Micrococcus luteus ATCC10240, Salmonella typhi ATCC19430, Escherichia coli ATCC35218. Pseudomonas aeruginosa ATCC27853 and Staphylococcus aureus ATCC25923 respectively, with no activity against Candida albicans ATCC10231. Our findings have revealed a novel cyclic peptide compound from B. megaterium with broad spectrum antimicrobial activity against both Gram positive and Gram negative bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...