Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 106(2): 874-879, 2018 02.
Article in English | MEDLINE | ID: mdl-28419698

ABSTRACT

Hypoxia-based strategies for applications in oral surgery and periodontology have been proposed where collagen barrier membranes (CBM) are loaded with hypoxia mimetic agents (HMA) to induce a pro-angiogenic response. While it was found that CBM release HMA, it remained unclear if CBM adsorb HMA activity. Here we evaluated the response of oral cells cultured on CBM, supplemented with the HMA dimethyloxalylglycine (DMOG), desferrioxamine (DFO), and l-mimosine (l-MIM). Gingival fibroblasts (GF) were cultured on unwashed CBM as well as on CBM that had been washed with serum-free medium for 48 hours. The pro-angiogenic response was measured based on vascular endothelial growth factor (VEGF) production. Viability and proliferation were assessed based on MTT and BrdU assays. We found that GF seeded onto CBM loaded with DFO and l-MIM, but not DMOG, showed an increase in VEGF to 6.1-fold and 7.7-fold compared to unloaded CBM, respectively. Cells remained vital, but a trend for decreased proliferation was observed on DMOG and DFO-loaded CBM which did not reach the level of significance. Evaluation of washed CBM revealed no difference between the unloaded CBM and CBM supplemented with DMOG, DFO, or l-MIM. In conclusion, our results suggest that CBM do not adsorb hypoxia mimetic activity but release HMA within the first hours. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 874-879, 2018.


Subject(s)
Biomimetic Materials/pharmacology , Collagen/chemistry , Fibroblasts/metabolism , Gingiva/metabolism , Membranes, Artificial , Cell Hypoxia/drug effects , Cells, Cultured , Female , Fibroblasts/pathology , Gingiva/pathology , Humans , Male
2.
J Biomater Appl ; 31(10): 1370-1379, 2017 05.
Article in English | MEDLINE | ID: mdl-28376673

ABSTRACT

Prolyl hydroxylase inhibitors induce a proangiogenic response and are therefore proposed to optimize regenerative approaches in periodontics and oral surgery. Here the effect of the prolyl hydroxylase inhibitors dimethyloxalylglycine and deferoxamine, released from collagen barrier membranes, on osteoclastogenesis and osteoblastogenesis was evaluated. Collagen barrier membranes were loaded with dimethyloxalylglycine and deferoxamine. Release studies were performed and supernatants were taken after 1, 3, 6, 24, and 48 h. The effect of these supernatants on osteoblast- and osteoclast-precursor cells was evaluated. Furthermore, dose response studies for dimethyloxalylglycine and deferoxamine were performed. Osteoclastogenesis was evaluated with RAW 264.7 cells based on the number of multinuclear tartrate-resistant acid phosphatase positive cells. Osteoblastogenesis was evaluated with MC3T3-E1 cells based on alkaline phosphatase. Metabolic activity and cell proliferation were assessed based on MTT and BrdU assays. Vascular endothelial growth factor production was evaluated using an immunoassay. We found that supernatants taken in the first hour from collagen barrier membranes loaded with dimethyloxalylglycine or deferoxamine reduced osteoclastogenesis. Osteoblastogenesis was not reduced significantly. Cell proliferation and metabolic activity of RAW 264.7 and MC3T3-E1 cells were inhibited by supernatants of collagen barrier membranes loaded with deferoxamine but not dimethyloxalylglycine. In RAW 264.7 cell culture, vascular endothelial growth factor production was increased only by supernatants of collagen barrier membranes loaded with dimethyloxalylglycine, but not deferoxamine. In MC3T3-E1 cell culture, supernatants of collagen barrier membranes loaded with dimethyloxalylglycine and deferoxamine both increased vascular endothelial growth factor production. Direct measurements showed that the majority of dimethyloxalylglycine and deferoxamine is released in the first hours. Dose-response studies supported the divergent effects of deferoxamine and dimethyloxalylglycine in RAW 264.7 and MC3T3-E1 cultures. Our findings show diverse effects of dimethyloxalylglycine- and deferoxamine-loaded collagen barrier membranes during osteoclastogenesis and osteoblastogenesis. Preclinical studies will reveal if the increase in vascular endothelial growth factor together with the inhibitory effect on osteoclasts can stimulate oral tissue regeneration.


Subject(s)
Amino Acids, Dicarboxylic/pharmacology , Collagen/chemistry , Deferoxamine/pharmacology , Osteoblasts/metabolism , Osteoclasts/metabolism , Prolyl-Hydroxylase Inhibitors/pharmacology , Alkaline Phosphatase/metabolism , Amino Acids, Dicarboxylic/chemistry , Animals , Biological Transport , Bone Resorption/metabolism , Cell Line , Cell Proliferation , Cell Survival , Deferoxamine/chemistry , Guided Tissue Regeneration , Mice , Osteogenesis , Permeability , Prolyl-Hydroxylase Inhibitors/chemistry , Tartrate-Resistant Acid Phosphatase/metabolism , Tissue Engineering , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...