Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083764

ABSTRACT

Over the past decade, there has been a growing interest in the development of an artificial pancreas for intraperitoneal insulin delivery. Intraperitoneal implantable pumps guarantee more physiological glycemic control than subcutaneous wearable ones, for the treatment of type 1 diabetes. In this work, a fully implantable artificial pancreas refillable by ingestible pills is presented. In particular, solutions enabling the communication between the implanted pump and external user interfaces and novel control algorithms to intraperitoneally release an adequate amount of insulin based on glycemic data are shown. In addition, the powering and the wireless battery recharging are addressed. Specifically, the design and optimization of a customized transcutaneous energy transfer with two independent wireless channels are presented. The system was tested in terms of recharging efficacy, possible temperature rise within the body, during the recharging process and reliability of the wireless connection in the air and in the presence of ex vivo tissues.Clinical Relevance- This work aims to improve the control, battery recharging, and wireless communication of a fully implantable artificial pancreas for type 1 diabetes treatment.


Subject(s)
Diabetes Mellitus, Type 1 , Pancreas, Artificial , Humans , Diabetes Mellitus, Type 1/drug therapy , Reproducibility of Results , Insulin , Prostheses and Implants
3.
Adv Healthc Mater ; 10(7): e2001434, 2021 04.
Article in English | MEDLINE | ID: mdl-33586352

ABSTRACT

Articular cartilage (AC) is a specialized connective tissue able to provide a low-friction gliding surface supporting shock-absorption, reducing stresses, and guaranteeing wear-resistance thanks to its structure and mechanical and lubrication properties. Being an avascular tissue, AC has a limited ability to heal defects. Nowadays, conventional strategies show several limitations, which results in ineffective restoration of chondral defects. Several tissue engineering approaches have been proposed to restore the AC's native properties without reproducing its mechanical and lubrication properties yet. This work reports the fabrication of a bilayered structure made of gellan gum (GG) and poly (ethylene glycol) diacrylate (PEGDA), able to mimic the mechanical and lubrication features of both AC superficial and deep zones. Through appropriate combinations of GG and PEGDA, cartilage Young's modulus is effectively mimicked for both zones. Graphene oxide is used as a dopant agent for the superficial hydrogel layer, demonstrating a lower friction than the nondoped counterpart. The bilayered hydrogel's antiwear properties are confirmed by using a knee simulator, following ISO 14243. Finally, in vitro tests with human chondrocytes confirm the absence of cytotoxicity effects. The results shown in this paper open the way to a multilayered synthetic injectable or surgically implantable filler for restoring AC defects.


Subject(s)
Cartilage, Articular , Graphite , Humans , Hydrogels , Lubrication , Polysaccharides, Bacterial , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...