Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Glob Chall ; 7(9): 2300091, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37745825

ABSTRACT

Solar evaporation is a facile and promising technology to efficiently utilize renewable energy for freshwater production and seawater desalination. Here, the fabrication of self-regenerating hydrogel composed of 2D-MXenes nanosheets embedded in perovskite La 0.6Sr 0.4Co 0.2Fe 0.8O3- δ (LSCF)/polyvinyl alcohol hydrogels for efficient solar-driven evaporation and seawater desalination is reported. The mixed dimensional LSCF/Ti3C2 composite features a localized surface plasmonic resonance effect in the polymeric network of polyvinyl alcohol endows excellent evaporation rates (1.98 kg m-2 h-1) under 1 k Wm-2 or one sun solar irradiation ascribed by hydrophilicity and broadband solar absorption (96%). Furthermore, the long-term performance reveals smooth mass change (13.33 kg m-2) during 8 h under one sun. The composite hydrogel prompts the dilution of concentrated brines and redissolves it back to water (1.2 g NaCl/270 min) without impeding the evaporation rate without any salt-accumulation. The present research offers a substantial opportunity for solar-driven evaporation without any salt accumulation in real-life applications.

2.
Small ; 19(46): e2302760, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37469206

ABSTRACT

Insight into fundamental light-matter interaction as well as underlying photo-physical processes is crucial for the development of novel optoelectronic devices. Palladium diselenide (PdSe2 ), an important representative of emerging 2D noble metal dichalcogenides, has gain considerable attention owing to its unique optical, physical, and chemical properties. In this study, 2D PdSe2 nanosheets (NSs) are prepared using the liquid-phase exfoliation method. A broadband carrier relaxation dynamics from visible to near-infrared bands are revealed using a time-resolved transient absorption spectrometer, giving results that indicate band filling and bandgap renormalization (BGR) effects in the 2D PdSe2 NSs. The observed blue-shift of the transient absorption spectra at the primary stage and the subsequent red-shift can be ascribed to this BGR effect. These findings reveal the many-body character of the 2D TMDs material and may hold keys for applications in the field of optoelectronics and ultrafast photonics.

3.
Mikrochim Acta ; 190(8): 283, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37415040

ABSTRACT

Transition metal dichalcogenides (TMDs) are promising materials for chemiresistive gas sensor, while TMD alloys (two chalcogenide or/and metal elements) with tunable electronic structures have drawn little attention in gas sensing. Herein, Mo0.5W0.5S2 alloy nanoparticles (NPs) were prepared by a facile sonication exfoliation method and then tested for ammonia sensing. The crystal structure, geometric morphology, and elemental composition of Mo0.5W0.5S2 NPs were investigated. The gas sensing measurements demonstrated Mo0.5W0.5S2 NPs with good response to ammonia at 80 °C with a limit of detection down to 500 part per billion (ppb). The sensor also displayed good stability as well as superb selectivity to ammonia in the presence of interferences, such as methanol, acetone, benzene, and cyclohexane. The theoretical calculations revealed Mo and W atoms at edges (such as Mo0.5W0.5S2 (010)) of sheet-like NPs as the active sites for ammonia adsorption. Electrons donated by the adsorbed ammonia were combined with holes in p-type Mo0.5W0.5S2 NPs, and the concentration of the main charge carrier was reduced, resulting in resistance enhancement.


Subject(s)
Alloys , Nanoparticles , Ammonia , Limit of Detection , Acetone
4.
Research (Wash D C) ; 6: 0205, 2023.
Article in English | MEDLINE | ID: mdl-37521328

ABSTRACT

Infectious diseases severely threaten public health and global biosafety. In addition to transmission through the air, pathogenic microorganisms have also been detected in environmental liquid samples, such as sewage water. Conventional biochemical detection methodologies are time-consuming and cost-ineffective, and their detection limits hinder early diagnosis. In the present study, ultrafine plasmonic fiber probes with a diameter of 125 µm are fabricated for clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-12a-mediated sensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Single-stranded DNA exposed on the fiber surface is trans-cleaved by the Cas12a enzyme to release gold nanoparticles that are immobilized onto the fiber surface, causing a sharp reduction in the surface plasmon resonance (SPR) wavelength. The proposed fiber probe is virus-specific with the limit of detection of ~2,300 copies/ml, and genomic copy numbers can be reflected as shifts in wavelengths. A total of 21 sewage water samples have been examined, and the data obtained are consistent with those of quantitative polymerase chain reaction (qPCR). In addition, the Omicron variant and its mutation sites have been fast detected using S gene-specific Cas12a. This study provides an accurate and convenient approach for the real-time surveillance of microbial contamination in sewage water.

5.
J Nanobiotechnology ; 21(1): 141, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37120637

ABSTRACT

Since the end of 2019, a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has deprived numerous lives worldwide, called COVID-19. Up to date, omicron is the latest variant of concern, and BA.5 is replacing the BA.2 variant to become the main subtype rampaging worldwide. These subtypes harbor an L452R mutation, which increases their transmissibility among vaccinated people. Current methods for identifying SARS-CoV-2 variants are mainly based on polymerase chain reaction (PCR) followed by gene sequencing, making time-consuming processes and expensive instrumentation indispensable. In this study, we developed a rapid and ultrasensitive electrochemical biosensor to achieve the goals of high sensitivity, the ability of distinguishing the variants, and the direct detection of RNAs from viruses simultaneously. We used electrodes made of MXene-AuNP (gold nanoparticle) composites for improved sensitivity and the CRISPR/Cas13a system for high specificity in detecting the single-base L452R mutation in RNAs and clinical samples. Our biosensor will be an excellent supplement to the RT-qPCR method enabling the early diagnosis and quick distinguishment of SARS-CoV-2 Omicron BA.5 and BA.2 variants and more potential variants that might arise in the future.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Clustered Regularly Interspaced Short Palindromic Repeats , Gold , Mutation , RNA
6.
Chemosphere ; 317: 137834, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640968

ABSTRACT

The water pollution becomes a serious concern for the sustainability of ecosystems due to the existence of pharmaceutical products (ceftriaxone (CEF) antibiotic). Even in low concentration of CEF has lethal effects on ecosystem and human health. To remove CEF, TiO2 is considered as an effective and efficient nanoparticles, however its performance is reduced due to wider energy gap and rapid recombination of charge carriers. In this study, activated carbon based TiO2 (ACT-X) heterogeneous nanocomposites were synthesized to improve the intrinsic properties of TiO2 and their adsorption-photocatalytic performance for the removal of CEF. The characterization results revealed that ACT-X composites have slower recombination of charge carriers, lower energy band gap (3.05 eV), and better light absorption under visible region of light. From ACT-X composites, the ACT-4 photocatalyst has achieved highest photocatalytic degradation (99.6%) and COD removal up (99.2%). The results of radical scavengers showed that photocatalytic degradation of CEF is mainly occurred due to superoxide and hydroxyl radicals. Meanwhile, the reusability of ACT-4 up to five cycles shows more than 80% photocatalytic degradation, which make the process more economical. The highest experimental adsorption capacity is achieved up to 844.8 mg g-1 using ACT-4. The favorable and multilayer heterogeneous adsorption is carried out according to the well-fitted data with pseudo-second-order and Freundlich models, respectively. These results indicate that the carbon-based TiO2 composites can be used as a green, stable, efficient, effective, reusable, renewable, and sustainable photocatalyst to eliminate the pharmaceutical pollutants (antibiotics) via adsorption and photocatalytic degradation processes.


Subject(s)
Anti-Bacterial Agents , Water Pollutants, Chemical , Humans , Charcoal , Ceftriaxone , Wastewater , Ecosystem , Adsorption , Water Pollutants, Chemical/analysis , Titanium , Pharmaceutical Preparations , Catalysis
7.
Adv Mater ; 35(5): e2206212, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36373507

ABSTRACT

In terms of interlayer trions, electronic excitations in van der Waals heterostructures (vdWHs) can be classified into Type I (i.e., two identical charges in the same layer) and Type II (i.e., two identical charges in the different layers). Type I interlayer trions are investigated theoretically and experimentally. By contrast, Type II interlayer trions remain elusive in vdWHs, due to inadequate free charges, unsuitable band alignment, reduced Coulomb interactions, poor interface quality, etc. Here, the first observation of Type II interlayer trions is reported by exploring band alignments and choosing an atomically thin organic-inorganic system-monolayer WSe2 /bilayer pentacene heterostructure (1L + 2L HS). Both positive and negative Type II interlayer trions are electrically tuned and observed via PL spectroscopy. In particular, Type II interlayer trions exhibit in-plane anisotropic emission, possibly caused by their unique spatial structure and anisotropic charge interactions, which is highly correlated with the transition dipole moment of pentacene. The results pave the way to develop excitonic devices and all-optical circuits using atomically thin organic-inorganic bilayers.

8.
Materials (Basel) ; 15(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431427

ABSTRACT

This work synthesized Pt-doped dye-sensitized solar cells (DSSC) with different molar ratios and thicknesses. The materials were revealed fully through X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photovoltaic properties of the sample were studied by UV-visible spectroscopy, electrochemical impedance spectroscopy (EIS), and IPEC (incident photon-to-current conversion efficiency) techniques. EIS analysis established the decrease in series resistance at the electrolyte interface. It could be one of the reasons for the increase in electron transfer rate and decrease in the recombination process at the interface. Statistical data obtained from optical and electrical investigations revealed that the electrical power-output efficiency of DSSC was 14.25%. It was found that a high ratio of Pt doping and thinner thickness can promote cell performance, owing to the reduction of series resistance, lower bandgap, and high dye adsorption. Doping TiO2 with Pt reduced its energy bandgap and introduces intermediate energy levels inside TiO2 to facilitate the transition of electrons at low excitation energies. The absorbance of the samples 0.15 M Pt and 0.25 M Pt showed improvement in the wavelength ranging from 200 to 800 nm by Pt doping.

9.
J Control Release ; 352: 338-370, 2022 12.
Article in English | MEDLINE | ID: mdl-36206948

ABSTRACT

Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.


Subject(s)
Brain Neoplasms , Glioma , Nanostructures , Humans , Glioma/therapy , Glioma/drug therapy , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , Nanomedicine , Nanostructures/therapeutic use , Blood-Brain Barrier , Tumor Microenvironment
10.
Noncoding RNA Res ; 7(4): 248-257, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36247409

ABSTRACT

Breast cancer is a major health threat to women globally. Many circulating microRNAs are non-invasive cancer biomarkers. In this study, the expression of miR-29b and miR-31 was assessed in blood samples from 200 patients with breast cancer and wholesome volunteer women using quantitative reverse transcriptase PCR to evaluate their role in the disease. MiR-29b was significantly overexpressed in patients compared to controls. Multivariate regression analysis showed that it was an established risk factor for relapse and mortality. MiR-31 was significantly under-expressed in patients. It was an established risk factor for relapse and was strongly associated with mortality. For the prediction of relapse, miR-29b had a sensitivity of 81.25% and a specificity of 88.24% at a cutoff of > 30.09, while miR-31 had a sensitivity of 87.50% and a specificity of 79.41% at a cutoff of 0.12. The specificity was enhanced to 100% by combining the values of miR-29b and miR-31. In predicting mortality, miR-29b exhibited a sensitivity of 90% and a specificity of 97.5% at a cutoff of > 48.10. At a cutoff of 0.119, miR-31 exhibited a sensitivity of 87.50% and a specificity of 79.41%. High miR-29b expression and low miR-31 expression were linked with a low survival rate. MiR-29b and miR-31 could be useful markers for predicting breast cancer relapse and mortality.

11.
Chemosphere ; 308(Pt 2): 136358, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36087730

ABSTRACT

According to World Health Organization (WHO) survey, air pollution has become the major reason of several fatal diseases, which had led to the death of 7 million peoples around the globe. The 9 people out of 10 breathe air, which exceeds WHO recommendations. Several strategies are in practice to reduce the emission of pollutants into the air, and also strict industrial, scientific, and health recommendations to use sustainable green technologies to reduce the emission of contaminants into the air. Photocatalysis technology recently has been raised as a green technology to be in practice towards the removal of air pollutants. The scientific community has passed a long pathway to develop such technology from the material, and reactor points of view. Many classes of photoactive materials have been suggested to achieve such a target. In this context, the contribution of conjugated polymers (CPs), and their modification with some common inorganic semiconductors as novel photocatalysts, has never been addressed in literature till now for said application, and is critically evaluated in this review. As we know that CPs have unique characteristics compared to inorganic semiconductors, because of their conductivity, excellent light response, good sorption ability, better redox charge generation, and separation along with a delocalized π-electrons system. The advances in photocatalytic removal/reduction of three primary air-polluting compounds such as CO2, NOX, and VOCs using CPs based photocatalysts are discussed in detail. Furthermore, the synergetic effects, obtained in CPs after combining with inorganic semiconductors are also comprehensively summarized in this review. However, such a combined system, on to better charges generation and separation, may make the Adsorb & Shuttle process into action, wherein, CPs may play the sorbing area. And, we hope that, the critical discussion on the further enhancement of photoactivity and future recommendations will open the doors for up-to-date technology transfer in modern research.


Subject(s)
Air Pollutants , Environmental Pollutants , Carbon Dioxide , Catalysis , Humans , Polymers , Technology
12.
Natl Sci Rev ; 9(8): nwac104, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35992231

ABSTRACT

The outbreak of the COVID-19 pandemic was partially due to the challenge of identifying asymptomatic and presymptomatic carriers of the virus, and thus highlights a strong motivation for diagnostics with high sensitivity that can be rapidly deployed. On the other hand, several concerning SARS-CoV-2 variants, including Omicron, are required to be identified as soon as the samples are identified as 'positive'. Unfortunately, a traditional PCR test does not allow their specific identification. Herein, for the first time, we have developed MOPCS (Methodologies of Photonic CRISPR Sensing), which combines an optical sensing technology-surface plasmon resonance (SPR) with the 'gene scissors' clustered regularly interspaced short palindromic repeat (CRISPR) technique to achieve both high sensitivity and specificity when it comes to measurement of viral variants. MOPCS is a low-cost, CRISPR/Cas12a-system-empowered SPR gene-detecting platform that can analyze viral RNA, without the need for amplification, within 38 min from sample input to results output, and achieve a limit of detection of 15 fM. MOPCS achieves a highly sensitive analysis of SARS-CoV-2, and mutations appear in variants B.1.617.2 (Delta), B.1.1.529 (Omicron) and BA.1 (a subtype of Omicron). This platform was also used to analyze some recently collected patient samples from a local outbreak in China, identified by the Centers for Disease Control and Prevention. This innovative CRISPR-empowered SPR platform will further contribute to the fast, sensitive and accurate detection of target nucleic acid sequences with single-base mutations.

13.
Nanomicro Lett ; 14(1): 159, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35925472

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The gold standard method for the diagnosis of SARS-CoV-2 depends on quantitative reverse transcription-polymerase chain reaction till now, which is time-consuming and requires expensive instrumentation, and the confirmation of variants relies on further sequencing techniques. Herein, we first proposed a robust technique-methodology of electrochemical CRISPR sensing with the advantages of rapid, highly sensitivity and specificity for the detection of SARS-CoV-2 variant. To enhance the sensing capability, gold electrodes are uniformly decorated with electro-deposited gold nanoparticles. Using DNA template identical to SARS-CoV-2 Delta spike gene sequence as model, our biosensor exhibits excellent analytical detection limit (50 fM) and high linearity (R2 = 0.987) over six orders of magnitude dynamic range from 100 fM to 10 nM without any nucleic-acid-amplification assays. The detection can be completed within 1 h with high stability and specificity which benefits from the CRISPR-Cas system. Furthermore, based on the wireless micro-electrochemical platform, the proposed biosensor reveals promising application ability in point-of-care testing.

14.
Molecules ; 27(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35807251

ABSTRACT

We investigated how different doses of microwave irradiation (MR) affect seed germination in Sorghum, including the level of remediation against textile and surgical wastewater (WW) by modulating biochemical and morpho-physiological mechanisms under glutamic acid (GA) application. The experiment was conducted to determine the impact of foliar-applied GA on Sorghum under wastewater conditions. Plants were treated with or without microwave irradiation (30 s, 2.45 GHz), GA (5 and 10 mM), and wastewater (0, 25, 50, and 100). Growth and photosynthetic pigments were significantly decreased in plants only treated with various concentrations of WW. GA significantly improved the plant growth characteristics both in MR-treated and -untreated plants compared with respective controls. HMs stress increased electrolyte leakage (EL), hydrogen peroxide (H2O2), and malondialdehyde (MDA) content; however, the GA chelation significantly improved the antioxidant enzymes activities such as ascorbate oxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) both in MR-treated and -untreated plants under WW stress compared with respective controls. The results suggested that the MR-treated plants accumulate higher levels of HMs under GA addition in comparison to the WW-only-treated and MR-untreated plants. The maximum increase in Cd accumulation was observed in the range of 14-629% in the roots, 15-2964% in the stems, and 26-4020% in the leaves; the accumulation of Cu was 18-2757% in the roots, 15-4506% in the stems, and 23-4605% in the leaves; and the accumulation of Pb was 13-4122% in the roots, 21-3588% in the stems, and 21-4990% in the leaves under 10 mM GA and MR-treated plants. These findings confirmed that MR-treated sorghum plants had a higher capacity for HMs uptake under GA and could be used as a potential candidate for wastewater treatment.


Subject(s)
Soil Pollutants , Sorghum , Antioxidants/analysis , Glutamic Acid/analysis , Hydrogen Peroxide/analysis , Microwaves , Plant Leaves/chemistry , Soil Pollutants/analysis , Superoxide Dismutase , Wastewater/analysis
15.
J Colloid Interface Sci ; 624: 411-422, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35660909

ABSTRACT

Well-organized water splitting semiconducting photocatalyst is an important concept, but stimulating aimed at decisive energy and environmental emergencies. In this context, visible light-based photocatalytic water splitting with low-dimensional semiconducting materials is proposed to produce sustainable energy. Here we optimized the sequential of organic electron-rich heterocyclic monomer namely benzothiadiazole (BTD) quenched within polymeric carbon nitride (PCN) semiconductor via copolymerization, thereby assembling a sanctum of donor-π-acceptor (D-π-A) photocatalysts. The selection of BTD is based on the benzene ring, which consequently anticipating a π cross-linker unit for hydrogen and oxygen evolution. A hydrogen evolution rates (HER) of 88.2 µmol/h for pristine PCN and 744.2 µmol/h for PCN-BTD008 (eight times higher than pure PCN) are observed. Additionally, a remarkable apparent quantum yield (AQY) of about 58.6% at 420 nm has been observed for PCN-BTD008. Likewise, the oxygen evolution rate (OER) data reflect the generation of 0.2 µmol/h1 (visible) and 1.6 µmol/h1 (non-visible) for pure PCN. Though, OER of PCN-BTD008 is found to be 2.2 µmol/h1 (visible) and 14.8 µmol/h1 (non-visible), which are economically better than pure PCN. As such, the results show an important step toward modifying the design and explain a vital part of the D-π-A scheme at a balanced theme for fruitful photocatalysts intended for future demand.

16.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164289

ABSTRACT

The naturally occurring neocryptolepine (5-Methylindolo [2,3-b]quinoline) and its analogs exhibited prominent anticancer and antimalarial activity. However, the main problem of this class of compounds is their poor aqueous solubility, hampering their bioavailability and preventing their clinical development. To overcome the problem of insolubility and to improve the physicochemical and the pharmacological properties of 5-Methylindolo [2,3-b]quinoline compounds, this work was designed to encapsulate such efficient medical compounds into mesoporous silica oxide nanoemulsion (SiO2NPs). Thus, in this study, SiO2NPs was loaded with three different concentrations (0.2 g, 0.3, and 0.6 g) of 7b (denoted as NPA). The findings illustrated that the nanoparticles were formed with a spherical shape and exhibited small size (less than 500 nm) using a high concentration of the synthesized chemical compound (NPA, 0.6 g) and good stabilization against agglomeration (more than -30 mv). In addition, NPA-loaded SiO2NPs had no phase separation as observed by our naked eyes even after 30 days. The findings also revealed that the fabricated SiO2NPs could sustain the release of NPA at two different pH levels, 4.5 and 7.4. Additionally, the cell viability of the produced nanoemulsion system loaded with different concentrations of NPA was greater than SiO2NPs without loading, affirming that NPA had a positive impact on increasing the safety and cell viability of the whole nanoemulsion. Based on these obtained promising data, it can be considered that the prepared NPA-loaded SiO2NPs seem to have the potential for use as an effective anticancer drug nanosystem.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Delayed-Action Preparations/chemistry , Nanoparticles/chemistry , Quinolines/pharmacology , Alkaloids/administration & dosage , Alkaloids/chemical synthesis , Alkaloids/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Liberation , Humans , Hydrogen-Ion Concentration , Neoplasms/drug therapy , Quinolines/administration & dosage , Quinolines/chemical synthesis , Quinolines/chemistry , Silicon Dioxide/chemistry
17.
Results Phys ; 31: 105028, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34868832

ABSTRACT

We are considering a new COVID-19 model with an optimal control analysis when vaccination is present. Firstly, we formulate the vaccine-free model and present the associated mathematical results involved. Stability results for R 0 < 1 are shown. In addition, we frame the model with the vaccination class. We look at the mathematical results with the details of the vaccine model. Additionally, we are considering setting controls to minimize infection spread and control. We consider four different controls, such as prevention, vaccination control, rapid screening of people in the exposed category, and people who are identified as infected without screening. Using the suggested controls, we develop an optimal control model and derive mathematical results from it. In addition, the mathematical model with control and without control is resolved by the forward-backward Runge-Kutta method and presents the results graphically. The results obtained through optimal control suggest that controls can be useful for minimizing infected individuals and improving population health.

19.
Inorg Chem ; 60(24): 18608-18613, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34860009

ABSTRACT

Uniform, well-defined cadmium sulfide@cadmium selenide core/shell quantum dots (CdS@CdSe QDs) were, for the first time, successfully synthesized by a solvothermal method and chemical bath growth for photoelectrochemical activities. The as-synthesized CdS@CdSe QDs not only exhibit superior self-powered photoresponse behavior and excellent stability under ambient conditions but also display significantly improved current densities and photoresponsivity compared to those of individual CdS QDs or CdSe QDs, mainly due to the built-in electric field, and thus have great potential in the fields of renewable energy and renewable energy consumption for carbon neutrality target achievement.

20.
ACS Appl Mater Interfaces ; 13(46): 54621-54647, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34767342

ABSTRACT

Owing to the distinctive constituents of tumor tissue from those healthy organs, nanomedicine strategies show significant potentials in smart drug delivery. Nowadays, stimuli-responsive nanogels are playing increasingly important roles in the application of cancer therapy because of their sensitivity to various internal or external physicochemical stimuli, which exhibit site-specific and markedly enhanced drug release. Besides, nanogels are promising as drug carriers because of their porous structures, good biocompatibility, large surface area, and excellent capability with drugs. Taking advantage of multiresponsiveness, recent years have witnessed the rapid evolution of stimulus-responsive nanogels from monoresponsive to multiresponsive systems; however, there lacks a comprehensive review summarizing these reports. In this Review, we discuss the properties, synthesis, and characterization of nanogels. Moreover, tumor microenvironment and corresponding designing strategies for stimuli-response nanogels, both exogenous (temperature, magnetic field, light) and endogenous (pH, biomolecular, redox, ROS, pressure, hypoxia) are summarized on the basis of the recent advances in multistimuli-responsive nanogel systems. Nanogel and two-dimensional material composites show excellent performance in the field of constructing multistimulus-responsive nanoparticles and precise intelligent drug release integrated system for multimodal cancer diagnosis and therapy. Finally, potential progresses and suggestions are provided for the further design of hybrid nanogels based on emerging two-dimensional materials.


Subject(s)
Antineoplastic Agents/therapeutic use , Biocompatible Materials/chemistry , Nanogels/chemistry , Neoplasms/drug therapy , Biocompatible Materials/chemical synthesis , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...