Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Diabetes ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608276

ABSTRACT

The RabGTPase-activating protein (RabGAP) TBC1D4 (=AS160) represents a key component in the regulation of glucose transport into skeletal muscle and white adipose tissue (WAT) and is therefore crucial during the development of insulin resistance and type-2 diabetes. Increased daily activity has been shown to be associated with improved postprandial hyperglycemia in allele carriers of a loss-of-function variant in the human TBC1D4 gene. Using conventional Tbc1d4-deficient mice (D4KO) fed a high-fat diet (HFD), we show that already a moderate endurance exercise training leads to substantially improved glucose and insulin tolerance and enhanced expression levels of markers for mitochondrial activity and browning in WAT from D4KO animals. Importantly, in vivo and ex vivo analyses of glucose uptake revealed increased glucose clearance in interscapular brown adipose tissue (iBAT) and WAT from trained D4KO mice. Thus, chronic exercise is able to overcome the genetically induced insulin resistance caused by the Tbc1d4-depletion. Gene variants in TBC1D4 may be relevant in future precision medicine as determinants of exercise response.

2.
Signal Transduct Target Ther ; 9(1): 103, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664368

ABSTRACT

Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance. They, for instance, regulate appetite and satiety in certain hypothalamic neurons, as well as glucose and lipid metabolism and hormone secretion from adipocytes. Mutations in some GPCRs, such as the melanocortin receptor type 4 (MC4R), have been associated with early-onset obesity. Here, we identified the adhesion GPCR latrophilin 1 (ADGRL1/LPHN1) as a member of the regulating network governing food intake and the maintenance of energy balance. Deficiency of the highly conserved receptor in mice results in increased food consumption and severe obesity, accompanied by dysregulation of glucose homeostasis. Consistently, we identified a partially inactivating mutation in human ADGRL1/LPHN1 in a patient suffering from obesity. Therefore, we propose that LPHN1 dysfunction is a risk factor for obesity development.


Subject(s)
Obesity , Receptors, G-Protein-Coupled , Receptors, Peptide , Animals , Humans , Mice , Energy Metabolism/genetics , Glucose/metabolism , Glucose/genetics , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism
3.
iScience ; 27(3): 109276, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38450153

ABSTRACT

Chronic stress episodes increase metabolic disease risk even after recovery. We propose that persistent stress detrimentally impacts hepatic metabolic reprogramming, particularly mitochondrial function. In male C57BL/6 mice chronic variable stress (Cvs) reduced energy expenditure (EE) and body mass despite increased energy intake versus controls. This coincided with decreased glucose metabolism and increased lipid ß-oxidation, correlating with EE. After Cvs, mitochondrial function revealed increased thermodynamic efficiency (ƞ-opt) of complex CI, positively correlating with blood glucose and NEFA and inversely with EE. After Cvs recovery, the metabolic flexibility of hepatocytes was lost. Reduced CI-driving NAD+/NADH ratio, and diminished methylation-related one-carbon cycle components hinted at epigenetic regulation. Although initial DNA methylation differences were minimal after Cvs, they diverged during the recovery phase. Here, the altered enrichment of mitochondrial DNA methylation and linked transcriptional networks were observed. In conclusion, Cvs rapidly initiates the reprogramming of hepatic energy metabolism, supported by lasting epigenetic modifications.

4.
Int J Mol Sci ; 25(3)2024 02 05.
Article in English | MEDLINE | ID: mdl-38339185

ABSTRACT

Impaired skeletal muscle glucose uptake is a key feature in the development of insulin resistance and type 2 diabetes. Skeletal muscle glucose uptake can be enhanced by a variety of different stimuli, including insulin and contraction as the most prominent. In contrast to the clearance of glucose from the bloodstream in response to insulin stimulation, exercise-induced glucose uptake into skeletal muscle is unaffected during the progression of insulin resistance, placing physical activity at the center of prevention and treatment of metabolic diseases. The two Rab GTPase-activating proteins (RabGAPs), TBC1D1 and TBC1D4, represent critical nodes at the convergence of insulin- and exercise-stimulated signaling pathways, as phosphorylation of the two closely related signaling factors leads to enhanced translocation of glucose transporter 4 (GLUT4) to the plasma membrane, resulting in increased cellular glucose uptake. However, the full network of intracellular signaling pathways that control exercise-induced glucose uptake and that overlap with the insulin-stimulated pathway upstream of the RabGAPs is not fully understood. In this review, we discuss the current state of knowledge on exercise- and insulin-regulated kinases as well as hypoxia as stimulus that may be involved in the regulation of skeletal muscle glucose uptake.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , GTPase-Activating Proteins/metabolism , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Muscle, Skeletal/metabolism , Glucose/metabolism , Insulin/metabolism , Phosphorylation , Insulin, Regular, Human , Glucose Transporter Type 4/metabolism , Muscle Contraction
5.
Nat Commun ; 15(1): 1076, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316785

ABSTRACT

Recently, we have shown that after partial hepatectomy (PHx), an increased hepatic blood flow initiates liver growth in mice by vasodilation and mechanically-triggered release of angiocrine signals. Here, we use mass spectrometry to identify a mechanically-induced angiocrine signal in human hepatic endothelial cells, that is, myeloid-derived growth factor (MYDGF). We show that it induces proliferation and promotes survival of primary human hepatocytes derived from different donors in two-dimensional cell culture, via activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3). MYDGF also enhances proliferation of human hepatocytes in three-dimensional organoids. In vivo, genetic deletion of MYDGF decreases hepatocyte proliferation in the regenerating mouse liver after PHx; conversely, adeno-associated viral delivery of MYDGF increases hepatocyte proliferation and MAPK signaling after PHx. We conclude that MYDGF represents a mechanically-induced angiocrine signal and that it triggers growth of, and provides protection to, primary mouse and human hepatocytes.


Subject(s)
Endothelial Cells , Interleukins , Liver Regeneration , Animals , Humans , Mice , Cell Proliferation , Endothelial Cells/metabolism , Hepatectomy , Hepatocytes/metabolism , Liver/metabolism , Liver Regeneration/physiology , Mitogen-Activated Protein Kinases/metabolism , Interleukins/metabolism
6.
Diabetes Obes Metab ; 26(1): 339-350, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37869933

ABSTRACT

AIMS: Exercise training induces white adipose tissue (WAT) beiging and improves glucose homeostasis and mitochondrial function in rodents. This could be relevant for type 2 diabetes in humans, but the effect of physical fitness on beiging of subcutaneous WAT (scWAT) remains unclear. This translational study investigates if beiging of scWAT associates with physical fitness in healthy humans and recent-onset type 2 diabetes and if a voluntary running wheel intervention is sufficient to induce beiging in mice. MATERIALS AND METHODS: Gene expression levels of established beiging markers were measured in scWAT biopsies of humans with (n = 28) or without type 2 diabetes (n = 28), stratified by spiroergometry into low (L-FIT; n = 14 each) and high physical fitness (H-FIT; n = 14 each). High-fat diet-fed FVB/N mice underwent voluntary wheel running, treadmill training or no training (n = 8 each group). Following the training intervention, mitochondrial respiration and content of scWAT were assessed by high-resolution respirometry and citrate synthase activity, respectively. RESULTS: Secreted CD137 antigen (Tnfrsf9/Cd137) expression was three-fold higher in glucose-tolerant H-FIT than in L-FIT, but not different between H-FIT and L-FIT with type 2 diabetes. In mice, both training modalities increased Cd137 expression and enhanced mitochondrial content without changing respiration in scWAT. Treadmill but not voluntary wheel running led to improved whole-body insulin sensitivity. CONCLUSIONS: Higher physical fitness and different exercise interventions associated with higher gene expression levels of the beiging marker CD137 in healthy humans and mice on a high-fat diet. Humans with recent-onset type 2 diabetes show an impaired adipose tissue-specific response to physical activity.


Subject(s)
Diabetes Mellitus, Type 2 , Diet, High-Fat , Humans , Mice , Animals , Motor Activity , Diabetes Mellitus, Type 2/metabolism , Subcutaneous Fat/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue , Physical Fitness , Glucose/metabolism
7.
Nutr Metab Cardiovasc Dis ; 33(9): 1785-1796, 2023 09.
Article in English | MEDLINE | ID: mdl-37495452

ABSTRACT

BACKGROUND AND AIMS: Increased hepatocellular lipid content (HCL) is linked to insulin resistance, risk of type 2 diabetes and related complications. Conversely, a single-nucleotide polymorphism (TM6SF2EK; rs58542926) in the transmembrane 6 superfamily member 2-gene has been associated with nonalcoholic fatty liver disease (NAFLD), but lower cardiovascular risk. This case-control study tested the role of this polymorphism for tissue-specific insulin sensitivity during early course of diabetes. METHODS AND RESULTS: Males with recent-onset type 2 diabetes with (TM6SF2EK: n = 16) or without (TM6SF2EE: n = 16) the heterozygous TM6SF2-polymorphism of similar age and body mass index, underwent Botnia-clamps with [6,6-2H2]glucose to measure whole-body-, hepatic- and adipose tissue-insulin sensitivity. HCL was assessed with 1H-magnetic-resonance-spectroscopy. A subset of both groups (n = 24) was re-evaluated after 5 years. Despite doubled HCL, TM6SF2EK had similar hepatic- and adipose tissue-insulin sensitivity and 27% higher whole-body-insulin sensitivity than TM6SF2EE. After 5 years, whole-body-insulin sensitivity, HCL were similar between groups, while adipose tissue-insulin sensitivity decreased by 87% and 55% within both groups and circulating triacylglycerol increased in TM6SF2EE only. CONCLUSIONS: The TM6SF2-polymorphism rs58542926 dissociates HCL from insulin resistance in recent-onset type 2 diabetes, which is attenuated by disease duration. This suggests that diabetes-related metabolic alterations dominate over effects of the TM6SF2-polymorphism during early course of diabetes and NAFLD.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Male , Case-Control Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Insulin Resistance/genetics , Liver/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/complications , Polymorphism, Single Nucleotide , Triglycerides/metabolism
8.
Front Endocrinol (Lausanne) ; 14: 1146454, 2023.
Article in English | MEDLINE | ID: mdl-37152954

ABSTRACT

Adipose tissue inflammation and insulin resistance are hallmarks in the development of metabolic diseases resulting from overweight and obesity, such as type 2 diabetes and non-alcoholic fatty liver disease. In obesity, adipocytes predominantly secrete proinflammatory adipokines that further promote adipose tissue dysfunction with negative effects on local and systemic insulin sensitivity. Expression of the serpin vaspin (SERPINA12) is also increased in obesity and type 2 diabetes, but exhibits compensatory roles in inflammation and insulin resistance. This has in part been demonstrated using vaspin-transgenic mice. We here report a new mouse line (h-vaspinTG) with transgenic expression of human vaspin in adipose tissue that reaches vaspin concentrations three orders of magnitude higher than wild type controls (>200 ng/ml). Phenotyping under chow and high-fat diet conditions included glucose-tolerance tests, measurements of energy expenditure and circulating parameters, adipose tissue and liver histology. Also, ex vivo glucose uptake in isolated adipocytes and skeletal muscle was analyzed in h-vaspinTG and littermate controls. The results confirmed previous findings, revealing a strong reduction in diet-induced weight gain, fat mass, hyperinsulinemia, -glycemia and -cholesterolemia as well as fatty liver. Insulin sensitivity in adipose tissue and muscle was not altered. The h-vaspinTG mice showed increased energy expenditure under high fat diet conditions, that may explain reduced weight gain and overall metabolic improvements. In conclusion, this novel human vaspin-transgenic mouse line will be a valuable research tool to delineate whole-body, tissue- and cell-specific effects of vaspin in health and disease.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Serpins , Humans , Mice , Animals , Diet, High-Fat/adverse effects , Mice, Transgenic , Obesity/genetics , Obesity/metabolism , Inflammation/metabolism , Weight Gain , Energy Metabolism/genetics , Serpins/genetics , Adipokines/metabolism
9.
Cell Mol Life Sci ; 80(4): 108, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36988756

ABSTRACT

Episodes of chronic stress can result in psychic disorders like post-traumatic stress disorder, but also promote the development of metabolic syndrome and type 2 diabetes. We hypothesize that muscle, as main regulator of whole-body energy expenditure, is a central target of acute and adaptive molecular effects of stress in this context. Here, we investigate the immediate effect of a stress period on energy metabolism in Musculus gastrocnemius in our established C57BL/6 chronic variable stress (Cvs) mouse model. Cvs decreased lean body mass despite increased energy intake, reduced circadian energy expenditure (EE), and substrate utilization. Cvs altered the proteome of metabolic components but not of the oxidative phosphorylation system (OXPHOS), or other mitochondrial structural components. Functionally, Cvs impaired the electron transport chain (ETC) capacity of complex I and complex II, and reduces respiratory capacity of the ETC from complex I to ATP synthase. Complex I-OXPHOS correlated to diurnal EE and complex II-maximal uncoupled respiration correlated to diurnal and reduced nocturnal EE. Bioenergetics assessment revealed higher optimal thermodynamic efficiencies (ƞ-opt) of mitochondria via complex II after Cvs. Interestingly, transcriptome and methylome were unaffected by Cvs, thus excluding major contributions to supposed metabolic adaptation processes. In summary, the preclinical Cvs model shows that metabolic pressure by Cvs is initially compensated by adaptation of mitochondria function associated with high thermodynamic efficiency and decreased EE to manage the energy balance. This counter-regulation of mitochondrial complex II may be the driving force to longitudinal metabolic changes of muscle physiological adaptation as the basis of stress memory.


Subject(s)
Diabetes Mellitus, Type 2 , Mice , Animals , Diabetes Mellitus, Type 2/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Oxidative Phosphorylation , Energy Metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Mitochondria, Muscle/metabolism
10.
Int J Obes (Lond) ; 47(6): 520-527, 2023 06.
Article in English | MEDLINE | ID: mdl-36997723

ABSTRACT

BACKGROUND/OBJECTIVE: Compelling evidence indicates that myokines act in an autocrine, paracrine and endocrine manner to alter metabolic homeostasis. The mechanisms underlying exercise-induced changes in myokine secretion remain to be elucidated. Since exercise acutely decreases oxygen partial pressure (pO2) in skeletal muscle (SM), the present study was designed to test the hypothesis that (1) hypoxia exposure impacts myokine secretion in primary human myotubes and (2) exposure to mild hypoxia in vivo alters fasting and postprandial plasma myokine concentrations in humans. METHODS: Differentiated primary human myotubes were exposed to different physiological pO2 levels for 24 h, and cell culture medium was harvested to determine myokine secretion. Furthermore, we performed a randomized single-blind crossover trial to investigate the impact of mild intermittent hypoxia exposure (MIH: 7-day exposure to 15% O2, 3x2h/day vs. normoxia: 21% O2) on in vivo SM pO2 and plasma myokine concentrations in 12 individuals with overweight and obesity (body-mass index ≥ 28 kg/m2). RESULTS: Hypoxia exposure (1% O2) increased secreted protein acidic and rich in cysteine (SPARC, p = 0.043) and follistatin like 1 (FSTL1, p = 0.021), and reduced leukemia inhibitory factor (LIF) secretion (p = 0.009) compared to 3% O2 in primary human myotubes. In addition, 1% O2 exposure increased interleukin-6 (IL-6, p = 0.004) and SPARC secretion (p = 0.021), whilst reducing fatty acid binding protein 3 (FABP3) secretion (p = 0.021) compared to 21% O2. MIH exposure in vivo markedly decreased SM pO2 (≈40%, p = 0.002) but did not alter plasma myokine concentrations. CONCLUSIONS: Hypoxia exposure altered the secretion of several myokines in primary human myotubes, revealing hypoxia as a novel modulator of myokine secretion. However, both acute and 7-day MIH exposure did not induce alterations in plasma myokine concentrations in individuals with overweight and obesity. CLINICAL TRIALS IDENTIFIER: This study is registered at the Netherlands Trial Register (NL7120/NTR7325).


Subject(s)
Follistatin-Related Proteins , Osteonectin , Humans , Osteonectin/metabolism , Overweight/metabolism , Single-Blind Method , Muscle, Skeletal/metabolism , Interleukin-6/metabolism , Obesity/metabolism , Hypoxia/metabolism , Follistatin-Related Proteins/metabolism
11.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614300

ABSTRACT

Type 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify novel T2D risk genes we previously generated an N2 outcross population using the two inbred mouse strains New Zealand obese (NZO) and C3HeB/FeJ (C3H). A linkage study performed in this population led to the identification of the novel T2D-associated quantitative trait locus (QTL) Nbg15 (NZO blood glucose on chromosome 15, Logarithm of odds (LOD) 6.6). In this study we used a combined approach of positional cloning, gene expression analyses and in silico predictions of DNA polymorphism on gene/protein function to dissect the genetic variants linking Nbg15 to the development of T2D. Moreover, we have generated congenic strains that associated the distal sublocus of Nbg15 to mechanisms altering pancreatic beta cell function. In this sublocus, Cbx6, Fam135b and Kdelr3 were nominated as potential causative genes associated with the Nbg15 driven effects. Moreover, a putative mutation in the Kdelr3 gene from NZO was identified, negatively influencing adaptive responses associated with pancreatic beta cell death and induction of endoplasmic reticulum stress. Importantly, knockdown of Kdelr3 in cultured Min6 beta cells altered insulin granules maturation and pro-insulin levels, pointing towards a crucial role of this gene in islets function and T2D susceptibility.


Subject(s)
Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Obesity , Receptors, Peptide , Animals , Mice , Diabetes Mellitus, Type 2/genetics , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Mice, Inbred C3H , Mice, Obese , Obesity/genetics , Receptors, Peptide/genetics
12.
Nat Cell Biol ; 25(1): 20-29, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36543979

ABSTRACT

Impaired proinsulin-to-insulin processing in pancreatic ß-cells is a key defective step in both type 1 diabetes and type 2 diabetes (T2D) (refs. 1,2), but the mechanisms involved remain to be defined. Altered metabolism of sphingolipids (SLs) has been linked to development of obesity, type 1 diabetes and T2D (refs. 3-8); nonetheless, the role of specific SL species in ß-cell function and demise is unclear. Here we define the lipid signature of T2D-associated ß-cell failure, including an imbalance of specific very-long-chain SLs and long-chain SLs. ß-cell-specific ablation of CerS2, the enzyme necessary for generation of very-long-chain SLs, selectively reduces insulin content, impairs insulin secretion and disturbs systemic glucose tolerance in multiple complementary models. In contrast, ablation of long-chain-SL-synthesizing enzymes has no effect on insulin content. By quantitatively defining the SL-protein interactome, we reveal that CerS2 ablation affects SL binding to several endoplasmic reticulum-Golgi transport proteins, including Tmed2, which we define as an endogenous regulator of the essential proinsulin processing enzyme Pcsk1. Our study uncovers roles for specific SL subtypes and SL-binding proteins in ß-cell function and T2D-associated ß-cell failure.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Proinsulin/genetics , Proinsulin/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Sphingolipids/metabolism , Diabetes Mellitus, Type 1/metabolism , Insulin/metabolism , Homeostasis , Carrier Proteins/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism
13.
Front Endocrinol (Lausanne) ; 13: 1028808, 2022.
Article in English | MEDLINE | ID: mdl-36387898

ABSTRACT

High level of interleukin 6 (IL-6), released by adipocytes in an obesity-induced, low grade inflammation state, is a regulator of insulin resistance and glucose tolerance. IL-6 has also regenerative, anti-inflammatory and anti-diabetogenic functions, when secreted as myokine by skeletal muscles during physical exercise. IL-6 mainly activates cells via two different receptor constellations: classic and trans-signalling, in which IL-6 initially binds to membrane-bound receptor (IL-6R) or soluble IL-6 receptor (sIL-6R) before activating signal transducing gp130 receptor. Previously, we generated transgenic soluble IL-6 receptor +/+ (sIL-6R+/+) mice with a strategy that mimics ADAM10/17 hyperactivation, reflecting a situation in which only IL-6 trans-signalling is active, whereas classic signalling is completely abrogated. In this study, we metabolically phenotyped IL-6R deficient mice (IL-6R-KO), sIL-6R+/+ mice and wild-type littermates fed either a standard chow (SD) or a high-fat diet (HFD) in combination with a 6-weeks treadmill exercise protocol. All mice were subjected to analyses of body weight and body composition, determination of blood glucose and insulin level under fasting conditions, as well as determination of substrate preference by indirect calorimetry. Neither classic IL-6 nor trans-signalling do influence the outcome of diet-induced obesity, insulin sensitivity and glycaemic control. Furthermore, IL-6R deficiency is not impairing the beneficial effect of physical exercise. We conclude that the IL-6R does not play a requisite role in regulation of body weight and glucose metabolism in diet-induced obese mice.


Subject(s)
Body Weight , Physical Conditioning, Animal , Receptors, Interleukin-6 , Animals , Mice , Diet, High-Fat/adverse effects , Insulin Resistance , Interleukin-6/metabolism , Obesity/etiology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism
14.
Front Microbiol ; 13: 947169, 2022.
Article in English | MEDLINE | ID: mdl-36118237

ABSTRACT

Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/ß receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry. Using this approach, multimeric single-binding GFP-mCherry ligands induced synthetic IFNAR1/IFNAR2 receptor complexes and initiated STAT1/2 mediated signal transduction via Jak1 and Tyk2. Homodimeric GFP and mCherry ligands showed that IFNAR2 but not IFNAR1 homodimers were sufficient to induce STAT1/2 signaling. Transcriptome analysis revealed that synthetic murine type I IFN signaling was highly comparable to IFNα4 signaling. Moreover, replication of vesicular stomatitis virus (VSV) in a cell culture-based viral infection model using MC57 cells was significantly inhibited after stimulation with synthetic ligands. Using intracellular deletion variants and point mutations, Y510 and Y335 in murine IFNAR2 were verified as unique phosphorylation sites for STAT1/2 activation, whereas the other tyrosine residues in IFNAR1 and IFNAR2 were not involved in STAT1/2 phosphorylation. Comparative analysis of synthetic human IFNARs supports this finding. In summary, our data showed that synthetic type I IFN signal transduction is originating from IFNAR2 rather than IFNAR1.

15.
Hum Mol Genet ; 31(23): 4019-4033, 2022 11 28.
Article in English | MEDLINE | ID: mdl-35796564

ABSTRACT

To nominate novel disease genes for obesity and type 2 diabetes (T2D), we recently generated two mouse backcross populations of the T2D-susceptible New Zealand Obese (NZO/HI) mouse strain and two genetically different, lean and T2D-resistant strains, 129P2/OlaHsd and C3HeB/FeJ. Comparative linkage analysis of our two female backcross populations identified seven novel body fat-associated quantitative trait loci (QTL). Only the locus Nbw14 (NZO body weight on chromosome 14) showed linkage to obesity-related traits in both backcross populations, indicating that the causal gene variant is likely specific for the NZO strain as NZO allele carriers in both crosses displayed elevated body weight and fat mass. To identify candidate genes for Nbw14, we used a combined approach of gene expression and haplotype analysis to filter for NZO-specific gene variants in gonadal white adipose tissue, defined as the main QTL-target tissue. Only two genes, Arl11 and Sgcg, fulfilled our candidate criteria. In addition, expression QTL analysis revealed cis-signals for both genes within the Nbw14 locus. Moreover, retroviral overexpression of Sgcg in 3T3-L1 adipocytes resulted in increased insulin-stimulated glucose uptake. In humans, mRNA levels of SGCG correlated with body mass index and body fat mass exclusively in diabetic subjects, suggesting that SGCG may present a novel marker for metabolically unhealthy obesity. In conclusion, our comparative-cross analysis could substantially improve the mapping resolution of the obesity locus Nbw14. Future studies will throw light on the mechanism by which Sgcg may protect from the development of obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Mice , Humans , Female , Animals , Diabetes Mellitus, Type 2/genetics , Chromosome Mapping , Genes, Modifier , Obesity/genetics , Obesity/metabolism , Body Weight/genetics , Mice, Inbred Strains , Genomics , ADP-Ribosylation Factors/genetics , Sarcoglycans/metabolism
16.
Int J Mol Sci ; 23(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35743314

ABSTRACT

Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.


Subject(s)
Fatty Liver , Insulin Resistance , Animals , Fatty Liver/metabolism , Lipogenesis/genetics , Liver/metabolism , Mice , Oxidative Phosphorylation , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
17.
Article in English | MEDLINE | ID: mdl-35367353

ABSTRACT

Changes in intracellular CoA levels are known to contribute to the development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2D) in human and rodents. However, the underlying genetic basis is still poorly understood. Due to their diverse susceptibility towards metabolic diseases, mouse inbred strains have been proven to serve as powerful tools for the identification of novel genetic factors that underlie the pathophysiology of NAFLD and diabetes. Transcriptome analysis of mouse liver samples revealed the nucleoside diphosphate linked moiety X-type motif Nudt19 as novel candidate gene responsible for NAFLD and T2D development. Knockdown (KD) of Nudt19 increased mitochondrial and glycolytic ATP production rates in Hepa 1-6 cells by 41% and 10%, respectively. The enforced utilization of glutamine or fatty acids as energy substrate reduced uncoupled respiration by 41% and 47%, respectively, in non-target (NT) siRNA transfected cells. This reduction was prevented upon Nudt19 KD. Furthermore, incubation with palmitate or oleate respectively increased mitochondrial ATP production by 31% and 20%, and uncoupled respiration by 23% and 30% in Nudt19 KD cells, but not in NT cells. The enhanced fatty acid oxidation in Nudt19 KD cells was accompanied by a 1.3-fold increased abundance of Pdk4. This study is the first to describe Nudt19 as regulator of hepatic lipid metabolism and potential mediator of NAFLD and T2D development.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Pyrophosphatases , Animals , Mice , Adenosine Triphosphate/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Hepatocytes/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Pyrophosphatases/metabolism , Nudix Hydrolases
18.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35328627

ABSTRACT

Current attempts to prevent and manage type 2 diabetes have been moderately effective, and a better understanding of the molecular roots of this complex disease is important to develop more successful and precise treatment options. Recently, we initiated the collective diabetes cross, where four mouse inbred strains differing in their diabetes susceptibility were crossed with the obese and diabetes-prone NZO strain and identified the quantitative trait loci (QTL) Nidd13/NZO, a genomic region on chromosome 13 that correlates with hyperglycemia in NZO allele carriers compared to B6 controls. Subsequent analysis of the critical region, harboring 644 genes, included expression studies in pancreatic islets of congenic Nidd13/NZO mice, integration of single-cell data from parental NZO and B6 islets as well as haplotype analysis. Finally, of the five genes (Acot12, S100z, Ankrd55, Rnf180, and Iqgap2) within the polymorphic haplotype block that are differently expressed in islets of B6 compared to NZO mice, we identified the calcium-binding protein S100z gene to affect islet cell proliferation as well as apoptosis when overexpressed in MIN6 cells. In summary, we define S100z as the most striking gene to be causal for the diabetes QTL Nidd13/NZO by affecting ß-cell proliferation and apoptosis. Thus, S100z is an entirely novel diabetes gene regulating islet cell function.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Animals , Diabetes Mellitus, Type 2/genetics , Genotype , Hyperglycemia/genetics , Mice , Mice, Inbred C57BL , Mice, Obese , Quantitative Trait Loci
19.
Diabetes Res Clin Pract ; 185: 109779, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35176401

ABSTRACT

Carriers heterozygous for the D124N (c.370, GAC > AAC in exon 4) variant of GCK not only exhibit reduced insulin-secretion, but also impaired adipose insulin sensitivity, which may shift fatty acids towards the liver. This could contribute to increased hepatic lipid-accumulation and alterations of liver energy metabolism resulting in dysglycemia. ClinicalTrial.gov registration no: NCT01055093.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Insulin Resistance , Adult , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism/genetics , Female , Glucokinase/genetics , Glucokinase/metabolism , Humans , Insulin Resistance/genetics , Liver/metabolism , Male , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...