Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Oncol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38506049

ABSTRACT

An immunosuppressive tumor microenvironment promotes tumor growth and is one of the main factors limiting the response to cancer immunotherapy. We have previously reported that inhibition of vacuolar protein sorting 34 (VPS34), a crucial lipid kinase in the autophagy/endosomal trafficking pathway, decreases tumor growth in several cancer models, increases infiltration of immune cells and sensitizes tumors to anti-programmed cell death protein 1/programmed cell death 1 ligand 1 therapy by upregulation of C-C motif chemokine 5 (CCL5) and C-X-C motif chemokine 10 (CXCL10) chemokines. The purpose of this study was to investigate the signaling mechanism leading to the VPS34-dependent chemokine increase. NanoString gene expression analysis was applied to tumors from mice treated with the VPS34 inhibitor SB02024 to identify key pathways involved in the anti-tumor response. We showed that VPS34 inhibitors increased the secretion of T-cell-recruitment chemokines in a cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING)-dependent manner in cancer cells. Both pharmacological and small interfering RNA (siRNA)-mediated VPS34 inhibition increased cGAS/STING-mediated expression and secretion of CCL5 and CXCL10. The combination of VPS34 inhibitor and STING agonist further induced cytokine release in both human and murine cancer cells as well as monocytic or dendritic innate immune cells. Finally, the VPS34 inhibitor SB02024 sensitized B16-F10 tumor-bearing mice to STING agonist treatment and significantly improved mice survival. These results show that VPS34 inhibition augments the cGAS/STING pathway, leading to greater tumor control through immune-mediated mechanisms. We propose that pharmacological VPS34 inhibition may synergize with emerging therapies targeting the cGAS/STING pathway.

2.
J Dev Biol ; 8(3)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906663

ABSTRACT

Formation and regulation of properly sized epithelial tubes is essential for multicellular life. The excretory canal cell of C. elegans provides a powerful model for investigating the integration of the cytoskeleton, intracellular transport, and organismal physiology to regulate the developmental processes of tube extension, lumen formation, and lumen diameter regulation in a narrow single cell. Multiple studies have provided new understanding of actin and intermediate filament cytoskeletal elements, vesicle transport, and the role of vacuolar ATPase in determining tube size. Most of the genes discovered have clear homologues in humans, with implications for understanding these processes in mammalian tissues such as Schwann cells, renal tubules, and brain vasculature. The results of several new genetic screens are described that provide a host of new targets for future studies in this informative structure.

3.
G3 (Bethesda) ; 9(5): 1339-1353, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30885922

ABSTRACT

Regulation of luminal diameter is critical to the function of small single-celled tubes, of which the seamless tubular excretory canals of Caenorhabditis elegans provide a tractable genetic model. Mutations in several sets of genes exhibit the Exc phenotype, in which canal luminal growth is visibly altered. Here, a focused reverse genomic screen of genes highly expressed in the canals found 18 genes that significantly affect luminal outgrowth or diameter. These genes encode novel proteins as well as highly conserved proteins involved in processes including gene expression, cytoskeletal regulation, and vesicular and transmembrane transport. In addition, two genes act as suppressors on a pathway of conserved genes whose products mediate vesicle movement from early to recycling endosomes. The results provide new tools for understanding the integration of cytoplasmic structure and physiology in forming and maintaining the narrow diameter of single-cell tubules.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Exocrine Glands/metabolism , Animals , Biological Transport , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/metabolism , Exocrine Glands/ultrastructure , Gene Knockdown Techniques , Genetic Association Studies , Genotype , Mutation , Phenotype , RNA Interference
4.
Genetics ; 210(2): 637-652, 2018 10.
Article in English | MEDLINE | ID: mdl-29945901

ABSTRACT

The excretory canals of Caenorhabditis elegans are a model for understanding the maintenance of apical morphology in narrow single-celled tubes. Light and electron microscopy shows that mutants in exc-2 start to form canals normally, but these swell to develop large fluid-filled cysts that lack a complete terminal web at the apical surface, and accumulate filamentous material in the canal lumen. Here, whole-genome sequencing and gene rescue show that exc-2 encodes intermediate filament protein IFC-2 EXC-2/IFC-2 protein, fluorescently tagged via clustered regularly interspaced short palindromic repeats/Cas9, is located at the apical surface of the canals independently of other intermediate filament proteins. EXC-2 is also located in several other tissues, though the tagged isoforms are not seen in the larger intestinal tube. Tagged EXC-2 binds via pulldown to intermediate filament protein IFA-4, which is also shown to line the canal apical surface. Overexpression of either protein results in narrow but shortened canals. These results are consistent with a model whereby three intermediate filaments in the canals-EXC-2, IFA-4, and IFB-1-restrain swelling of narrow tubules in concert with actin filaments that guide the extension and direction of tubule outgrowth, while allowing the tube to bend as the animal moves.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Epithelial Cells/metabolism , Intermediate Filament Proteins/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Epithelial Cells/cytology , Intermediate Filament Proteins/genetics , Protein Binding
5.
Genetics ; 203(4): 1789-806, 2016 08.
Article in English | MEDLINE | ID: mdl-27334269

ABSTRACT

Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Endosomes/genetics , Metalloproteins/genetics , Animals , Autophagy/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/metabolism , Crohn Disease/genetics , Crohn Disease/pathology , Cytoskeleton/genetics , Cytoskeleton/metabolism , Endosomes/metabolism , Humans , Kidney Tubules/growth & development , Kidney Tubules/metabolism , Metalloproteins/metabolism , Protein Transport/genetics , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...