Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
iScience ; 26(11): 108224, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38107878

ABSTRACT

Menstruating individuals without access to adequate hygiene products often improvise with alternatives that pose health risks and limit their participation in society. We describe here a menstrual hygiene product based on low-cost materials, which are integrated onto fabrics to imbue unidirectional permeability. A body-facing "Janus" fabric top layer comprising ZnO tetrapods spray-coated onto polyester mosquito netting imparts hierarchical texturation, augmenting the micron-scale texturation derived from the weave of the underlying fabric. The asymmetric coating establishes a gradient in wettability, which underpins flash spreading and unidirectional permeability. The hygiene product accommodates a variety of absorptive media, which are sandwiched between the Janus layer and a second outward-facing coated densely woven fabric. An assembled prototype demonstrates outstanding ability to wick saline solutions and a menstrual fluid simulant while outperforming a variety of commercially alternatives. The results demonstrate a versatile menstrual health product that provides a combination of dryness, discretion, washability, and safety.

2.
ACS Energy Lett ; 8(8): 3387-3397, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37588019

ABSTRACT

We investigate the charge-generation processes limiting the performance of low-offset organic bulk-heterojunction solar cells by studying a series of newly synthesized PBDB-T-derivative donor polymers whose ionisation energy (IE) is tuned via functional group (difluorination or cyanation) and backbone (thiophene or selenophene bridge) modifications. When blended with the acceptor Y6, the series present heterojunction donor-acceptor IE offsets (ΔEIE) ranging from 0.22 to 0.59 eV. As expected, small ΔEIE decrease nonradiative voltage losses but severely suppresses photocurrent generation. We explore the origin of this reduced charge-generation efficiency at low ΔEIE through a combination of opto-electronic and spectroscopic measurements and molecular and device-level modeling. We find that, in addition to the expected decrease in local exciton dissociation efficiency, reducing ΔEIE also strongly reduces the charge transfer (CT) state dissociation efficiency, demonstrating that poor CT-state dissociation can limit the performance of low-offset heterojunction solar cells.

3.
Chem Sci ; 14(4): 812-821, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36755723

ABSTRACT

One of the main assumptions in the design of new conjugated polymer materials for their use in organic electronics is that higher coplanarity leads to greater conjugation along the polymer backbone. Conventionally, a more planar monomer structure induces a larger backbone coplanarity, thus leading to a greater overlap of the carbon π-orbitals and therefore a higher degree of π-electron delocalisation. However, here we present a case that counters the validity of this assumption. Different diselenophene-based polymers were studied where one polymer possesses two selenophene rings fused together to create a more rigid, planar structure. The effects of this greater polymer coplanarity were examined using Raman spectroscopy and theoretical calculations. Raman spectra showed a large difference between the vibrational modes of the fused and unfused polymers, indicating very different electronic structures. Resonance Raman spectroscopy confirmed the rigidity of the fused selenophene polymer and also revealed, by studying the excitation profiles of the different bands, the presence of two shorter, uncoupled conjugation pathways. Supported by Density Functional Theory (DFT) calculations, we have demonstrated that the reason for this lack of conjugation is a distortion of the selenophene rings due to the induced planarity, forming a new truncated conjugation pathway through the selenophene ß-position and bypassing the beneficial α-position. This effect was studied using DFT in an ample range of derivatives, where substitution of the selenium atom with other heteroatoms still maintained the same unconventional conjugation-planarity relationship, confirming the generality of this phenomenon. This work establishes an important structure-property relationship for conjugated polymers that will help rational design of more efficient organic electronics materials.

4.
ACS Omega ; 8(2): 1724-1738, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687055

ABSTRACT

The synthesis and applications of ring-opening metathesis polymerization (ROMP) derived poly(olefins) have emerged as an exciting area of great interest in the field of biomaterials science. The major focus of this mini-review is to present recent advances in the synthesis of functional materials using ROMP-derived poly(olefins) utilized for drug release, sensing, and cellular uptake in the past seven years (2015-2022). This review reveals that materials synthesized by ROMP-derived well-defined functional poly(olefins) stand to be highly promising systems for medical as well as biological studies. Thus, this review may prove to be beneficial for the design and development of new smart and flexible-functionality ROMP-based polymeric materials for various biological applications.

5.
Macromol Rapid Commun ; 44(4): e2200731, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36285613

ABSTRACT

The synthesis and characterization of asymmetric alkoxy- are reported, fluoro-benzothiadiazole (BT) acceptor core derivatized with a series of six different heterocycles (selenophene, thiophene, furan, 5-thiazole, 2-thiazole and 2-oxazole). The effect of the flanked-heterocycles containing different chalcogen atoms of the six homopolymers (HPX) is studied using optical, thermal, electrochemical, and computational analysis. Computational calculations indicate a strong relationship between the most stable conformation for each homopolymer and their bearing heterocycle, thus homopolymers HPSe', HPTp', HPFu', and HPTzC5, adopted the syn-syn and syn-anti conformations due to their noncovalent interactions with shorter distances, while HPTzC2' and HPOx' demonstrate preference for the anti-anti conformation. Optical property studies of the homopolymers reveal a strong red-shift in solution and film upon exchanging the chalcogen atom from Oxygen < Sulfur < Selenium in HPFu, HPTp, and HPSe, respectively. In addition, deeper highest occupied molecular orbital (HOMO) energy levels are observed when the donor-acceptor moieties (HPSe, HPTp, and HPFu) are substituted for the acceptor-acceptor systems such as HPTzC5, HPTzC2, and HPOx. Improved packing and morphology are exhibited for the donor-acceptor homopolymers. Thus, having a flanked heterocycle containing different chalcogen-atoms in polymeric systems is one way of tuning the physicochemical properties of conjugated materials for optoelectronic applications.


Subject(s)
Chalcogens , Thiadiazoles , Chalcogens/chemistry , Oxygen/chemistry
6.
ACS Eng Au ; 2(6): 477-485, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36573177

ABSTRACT

The energy required to heat, cool, and illuminate buildings continues to increase with growing urbanization, engendering a substantial global carbon footprint for the built environment. Passive modulation of the solar heat gain of buildings through the design of spectrally selective thermochromic fenestration elements holds promise for substantially alleviating energy consumed for climate control and lighting. The binary vanadium(IV) oxide VO2 manifests a robust metal-insulator transition that brings about a pronounced modulation of its near-infrared transmittance in response to thermal activation. As such, VO2 nanocrystals are potentially useful as the active elements of transparent thermochromic films and coatings. Practical applications in retrofitting existing buildings requires the design of workflows to embed thermochromic fillers within industrially viable resins. Here, we describe the dispersion of VO2 nanocrystals within a polyvinyl butyral laminate commonly used in the laminated glass industry as a result of its high optical clarity, toughness, ductility, and strong adhesion to glass. To form high-optical-clarity nanocomposite films, VO2 nanocrystals are encased in a silica shell and functionalized with 3-methacryloxypropyltrimethoxysilane, enabling excellent dispersion of the nanocrystals in PVB through the formation of siloxane linkages and miscibility of the methacrylate group with the random copolymer. Encapsulation, functionalization, and dispersion of the core-shell VO2@SiO2 nanocrystals mitigates both Mie scattering and light scattering from refractive index discontinuities. The nanocomposite laminates exhibit a 22.3% modulation of NIR transmittance with the functionalizing moiety engendering a 77% increase of visible light transmittance as compared to unfunctionalized core-shell particles. The functionalization scheme and workflow demonstrated, here, illustrates a viable approach for integrating thermochromic functionality within laminated glass used for retrofitting buildings.

7.
Chem Sci ; 13(41): 12034-12044, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36349116

ABSTRACT

Ladder-type thiazole-fused S,N-heteroacenes with an extended π-conjugation consisting of six (SN6-Tz) and nine (SN9-Tz) fused aromatic rings have been synthesized and fully characterized. To date, the synthesis of well-defined fused building blocks and polymers of π-conjugated organic compounds based on the thiazole moiety is a considerable synthetic challenge, due to the difficulty in their synthesis. Acceptor-donor building blocks M1 and M2 were successfully polymerized into ladder homopolymers P1-P2 and further copolymerized with a diketopyrrolopyrrole unit to afford step-ladder copolymer P3. The optical, electronic, and thermal properties, in addition to their charge transport behavior in organic thin-film transistors (OTFTs), were investigated. The results showed an interesting effect on the molecular arrangement of the thiazole-based ladder-type heteroacene in the crystal structure revealing skewed π-π-stacking, and expected to possess better p-type semiconducting performance. The polymers all possess good molecular weights and excellent thermal properties. All the polymer-based OTFT devices exhibit annealing temperature dependent performance, and among the polymers P3 exhibits the highest mobility of 0.05 cm2 V-1 s-1.

8.
Angew Chem Int Ed Engl ; 60(47): 25005-25012, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34519412

ABSTRACT

Conjugated polymers are an important class of chromophores for optoelectronic devices. Understanding and controlling their excited state properties, in particular, radiative and non-radiative recombination processes are among the greatest challenges that must be overcome. We report the synthesis and characterization of a molecularly encapsulated naphthalene diimide-based polymer, one of the most successfully used motifs, and explore its structural and optical properties. The molecular encapsulation enables a detailed understanding of the effect of interpolymer interactions. We reveal that the non-encapsulated analogue P(NDI-2OD-T) undergoes aggregation enhanced emission; an effect that is suppressed upon encapsulation due to an increasing π-interchain stacking distance. This suggests that decreasing π-stacking distances may be an attractive method to enhance the radiative properties of conjugated polymers in contrast to the current paradigm where it is viewed as a source of optical quenching.

9.
ACS Appl Mater Interfaces ; 13(34): 41094-41101, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34410686

ABSTRACT

Novel methods to synthesize electron-deficient π-conjugated polymers utilizing transition-metal-free coupling reactions for the use of nonfunctionalized monomers are attractive due to their improved atom economy and environmental prospective. Herein we describe the use of iPrMgCl·LiCl complex to afford thiazole-based conjugated polymers in the absence of any transition metal catalyst, that enables access to well-defined polymers with good molecular weights. The mechanistically distinct polymerizations proceeded via nucleophilic aromatic substitution (SNAr) reaction supported by density functional theory (DFT) calculations. This work demonstrates the first example of fully conjugated thiazole-based aromatic homopolymers without the need of any transition metal catalyst.

10.
Chem Sci ; 12(24): 8438-8444, 2021 May 18.
Article in English | MEDLINE | ID: mdl-34221325

ABSTRACT

It is urgently desired yet challenging to synthesize porous graphitic carbon (PGC) in a bottom-up manner while circumventing the need for high-temperature pyrolysis. Here we present an effective and scalable strategy to synthesize PGC through acid-mediated aldol triple condensation followed by low-temperature graphitization. The deliberate structural design enables its graphitization in situ in solution and at low pyrolysis temperature. The resulting material features ultramicroporosity characterized by a sharp pore size distribution. In addition, the pristine homogeneous composition of the reaction mixture allows for solution-processability of the material for further characterization and applications. Thin films of this PGC exhibit several orders of magnitude higher electrical conductivity compared to analogous control materials that are carbonized at the same temperatures. The integration of low-temperature graphitization and solution-processability not only allows for an energy-efficient method for the production and fabrication of PGC, but also paves the way for its wider employment in applications such as electrocatalysis, sensing, and energy storage.

11.
J Org Chem ; 86(3): 2100-2106, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33412007

ABSTRACT

An extensive polycyclic π-system with 23 fused rings is synthesized via a highly efficient borylation reaction, in which four B-N covalent bonds and four B←N coordinate bonds are formed in one pot. B←N coordinate bonds not only lock the backbone into a near-coplanar conformation but also decrease the LUMO energy level to around -3.82 eV, demonstrating the dual utility of this strategy for the synthesis of extensive rigid polycyclic molecules and the development of n-type conjugated materials for organic electronics and organic photovoltaics.

12.
Sci Rep ; 10(1): 19519, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177560

ABSTRACT

There a few reports of rhodamine-based fluorescent sensors for selective detection of only Al3+, due to the challenge of identifying a suitable ligand for binding Al3+ ion. The use of fluorophore moieties appended to a polymer backbone for sensing applications is far from mature. Here, we report a new fluorescent probe/monomer 4 and its ROMP derived polymer P for specific detection of Al3+ ions. Both monomer 4 and its polymer P exhibit high selectivity toward only Al3+ with no interference from other metal ions, having a limit detection of 0.5 and 2.1 µM, respectively. The reversible recognition of monomer 4 and P for Al3+ was also proved in presence of Na2EDTA by both UV-Vis and fluorometric titration. The experimental data indicates the behavior of 4 and P toward Al3+ is pH independent in medium conditions. In addition, the switch-on luminescence response of 4 at acidic pH (0 < 5.0), allowed us to specifically stain lysosomes (pH ~ 4.5-5.0) in live cells.


Subject(s)
Aluminum/analysis , Fluorescent Dyes/chemistry , Lysosomes/chemistry , Molecular Probe Techniques , Rhodamines/chemistry , Fluorescent Dyes/chemical synthesis , HEK293 Cells , HeLa Cells , Humans , Hydrogen-Ion Concentration , Limit of Detection , MCF-7 Cells , Molecular Imaging/methods , Molecular Probes/chemical synthesis , Molecular Probes/chemistry , Polymerization , Polymers/chemical synthesis , Polymers/chemistry , Spectrophotometry, Ultraviolet , Thermogravimetry
13.
Chem Commun (Camb) ; 56(79): 11783-11786, 2020 Oct 11.
Article in English | MEDLINE | ID: mdl-32960191

ABSTRACT

A facile synthetic method is developed to afford cyclodextrin-derived polymer networks that exhibit high selectivity in capturing certain organic compounds in water. The sustainable and scalable synthesis, together with the highly robust adsorption performance enables efficient removal and/or separation of organic molecules from aqueous solution in a continuous flow system.

14.
Macromol Rapid Commun ; 41(17): e2000382, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32803838

ABSTRACT

Functionalization of polyolefins, in particular polyisobutylene, remains a relatively unexplored application for the Michael reaction. This work evaluates the potential of polyisobutylene acrylate (PIBA) chain-end modification via organocatalyzed thiol-Michael and aza-Michael additions. A series of chain-end functional polyisobutylene oligomers are prepared using "click" reactions of thiols or amines to PIBA in the presence of 0.02 equivalents of organocatalyst. Reaction kinetics and chain-end transformations are monitored using NMR spectroscopy and the macromolecular products are characterized by size exclusion chromatography. Further potential of this synthetic strategy is illustrated by thiol-Michael addition of thiols formed in situ via nucleophilic thiolactone ring opening. The obtained results provide an efficient method for the preparation of functional polyisobutylene oligomers that can be utilized in a broad range of potential applications.


Subject(s)
Polymers , Sulfhydryl Compounds , Amines , Polyenes
15.
Dalton Trans ; 49(33): 11480-11488, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32743629

ABSTRACT

Data-driven approaches have brought about a revolution in manufacturing; however, challenges persist in their applications to synthetic strategies. Their application to the deterministic navigation of reaction trajectories to stabilize crystalline solids with precise composition, atomic connectivity, microstructural dimensionality, and surface structure remains a frontier in inorganic materials research. The design of synthetic methodologies for the preparation of inorganic materials is often inefficient in terms of exploration of potentially vast design spaces spanning multiple process variables, reaction sequences, as well as structural parameters and reactivities of precursors and structure-directing agents. Reported synthetic methods are further limited in terms of the insight they provide into underlying chemical and physical principles. The recent surge in interest in accelerating the discovery of new materials can be considered as an opportunity to re-evaluate our approach to materials synthesis, and for considering new frameworks for exploration that are systematic and strategic in approach. Herein, we outline with the help of several illustrative examples, the challenges, opportunities, and limitations of data-driven synthesis design. The account collates discussion of design-of-experiments sampling methods, machine learning modeling, and active learning to develop experimental workflows that accelerate the experimental navigation of synthetic landscapes.

16.
J Am Chem Soc ; 142(1): 641-648, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31829014

ABSTRACT

Polyaniline derivatives represent one of the most widely used classes of conductive polymers. The fundamentally important electronic properties of pernigraniline salts, the fully oxidized and acid-doped derivatives of polyanilines, however, are still not well-understood due to their poor stability and configurational uncertainty. To address these issues and to synthetically access stable analogues of pernigraniline salts, ladder-type constitution was imparted into a series of model oligomer analogues with rigid backbones constituted by up to 27 fused rings. The syntheses were achieved through iterative cross-coupling reactions followed by cyclization and oxidation. In contrast to their unstable non-ladder-type counterparts, these ladder-type pernigraniline-like molecules all adopt a well-defined all-trans configuration and demonstrate an excellent chemical stability after protonation, rendering it possible to reveal the intrinsic electronic and magnetic properties of molecules resembling pernigraniline. Protonated salts of these oligomers feature a significant diradicaloid open-shell resonance contribution. A dominant temperature-independent Pauli paramagnetism was observed in the solid state, an indication of the delocalization nature of the polarons in ladder-type analogues of pernigraniline salt.

17.
ACS Appl Mater Interfaces ; 11(37): 34376-34384, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31490644

ABSTRACT

Carbon monoxide (CO) is an important biological gasotransmitter in living cells. Precise spatial and temporal control over release of CO is a major requirement for clinical application. To date, the most reported carbon monoxide releasing materials use expensive fabrication methods and require harmful and poorly designed tissue-penetrating UV irradiation to initiate the CO release precisely at infected sites. Herein, we report the first example of utilizing a green light-responsive CO-releasing polymer P synthesized via ring-opening metathesis polymerization. Both monomer M and polymer P were very stable under dark conditions and CO release was effectively triggered using minimal power and low energy wavelength irradiation (550 nm, ≤28 mW). Time-dependent density functional theory (TD-DFT) calculations were carried out to simulate the electronic transition and insight into the nature of the excitations for both L and M. TD-DFT calculations indicate that the absorption peak of M is mainly due to the excitation of the seventh singlet excited state, S7. Furthermore, stretchable materials using polytetrafluoroethylene (PTFE) strips based on P were fabricated to afford P-PTFE, which can be used as a simple, inexpensive, and portable CO storage bandage. Insignificant cytotoxicity as well as cell permeability was found for M and P against human embryonic kidney cells.

18.
J Chem Phys ; 151(4): 044902, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31370564

ABSTRACT

A chief aim in singlet fission research is to develop new materials concepts for more efficient singlet fission. The typical approaches such as tuning π-overlap and charge-transfer interactions, enhancing delocalization, altering diradical character, or extending the conjugation length have profound effects simultaneously on the singlet and triplet energetics and the couplings between them. While these strategies have resulted in a handful of high-efficiency materials, the complex interplay of these factors makes systematic materials development challenging, and it would be useful to be able to selectively manipulate the properties and dynamics of just part of the singlet fission pathway. Here, we investigate the potential of heteroatom substitution as just such a selective tool. We explore the influence of heavy atoms within the main backbone of polythienylenevinylene and its selenophene and tellurophene derivatives. We find no significant effects on the prompt <300 fs intramolecular singlet fission dynamics but a clear heavy-atom effect on longer time scales.

19.
Bioorg Chem ; 87: 366-372, 2019 06.
Article in English | MEDLINE | ID: mdl-30913468

ABSTRACT

TPEN is an amino chelator of transition metals that is effective at the cellular and whole organism levels. Although TPEN of often used as a selective zinc chelators, it has affinity for copper and iron and has been shown to chelate both biologically. We have previously shown that TPEN selectively kills colon cancer cells based on its ability to chelate copper, which is highly enriched in colon cancer cells. The TPEN-copper complex is redox active thus allowing for increased ROS production in cancer cells and as such cellular toxicity. Here we generate TPEN derivatives with the goal of increasing its selectivity for copper while minimizing zinc chelation to reduce potential side effects. We show that one of these derivatives, TPEEN despite the fact that it exhibits reduced affinity for transition metals, is effective at inducing cell death in breast cancer cells, and exhibits less toxicity to normal breast cells. The toxicity effect of the both chelators coupled to the metal content of the different cell types reveals that they exhibit their toxicity through chelating redox active metals (iron and copper). As such TPEEN is an important novel chelators that can be exploited in anti-cancer therapies.


Subject(s)
Antineoplastic Agents/pharmacology , Copper/pharmacology , Ethylenediamines/pharmacology , Organometallic Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Copper/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ethylenediamines/chemistry , Humans , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
20.
ACS Cent Sci ; 4(4): 493-503, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29721532

ABSTRACT

Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...