Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotox Res ; 38(3): 626-639, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32683649

ABSTRACT

Major depression is a leading cause of morbidity and disease burden in modern society. Current drug treatment is only effective in a fraction of patients as underlying mechanisms of depression are not fully understood. ProBDNF, a precursor of brain-derived neurotrophic factor (BDNF), and its receptor p75NTR are highly upregulated in patients with major depression and in animal models of depression induced by chronic stress. Here, we hypothesise that proBDNF may be a pathogenic factor triggering depression. C57BL/6 mice were injected in the bilateral gluteus maximus muscle with AAV-proBDNF or AAV-EGFP. Four weeks after the injection, AAV-proBDNF injected animals developed depression-like behaviours, which were evident for 4-8 weeks and then returned to the control level after 12 weeks. In the second experiment, mice were divided into three groups; one group was treated with sheep anti-proBDNF antibody after AAV-proBDNF injection whereas the other two groups received PBS injection after the AAV-proBDNF or AAV-EGFP delivery. The group that was injected with AAV-proBDNF showed a time-dependent increase in immobility time in the tail suspension test and forced swim test, reduced sucrose consumption and decreased grooming time after sucrose spraying. Treatment with sheep anti-proBDNF antibody alleviated the depressive-like symptoms. Peripheral AAV-proBDNF delivery also resulted in a reduction of density and length of dendritic spines in the dentate gyrus and amygdala. Thus, we conclude that peripheral proBDNF is a primary pathogenic factor triggering depression-like behavioural changes in mice likely by reducing dendritic spine plasticity.


Subject(s)
Dependovirus/metabolism , Depression/metabolism , Depressive Disorder, Major/virology , Stress, Psychological/metabolism , Animals , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/virology , Mice, Inbred C57BL , Muscles/virology , Protein Precursors/metabolism
2.
J Mol Neurosci ; 69(1): 60-68, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31127538

ABSTRACT

In this study, we aimed to establish the effects of chronic corticosterone (CORT) and ethanol administration on mood-related behaviour and the levels of mature brain-derived neurotrophic factor (mBDNF) and its precursor protein proBDNF in mice. C57BL6 male and female mice received drinking water (n = 22), 1% ethanol in drinking water (n = 16) or 100 µg/ml corticosterone in drinking water (containing 1% ethanol, n = 18) for 4.5 weeks. At the end of experimental protocol, the open field test (OFT) and elevated plus maze test were performed. Brain and adrenal tissues were collected and mBDNF and proBDNF were measured by ELISA assays. We found that the mice fed with corticosterone and ethanol developed anxiety-like behaviours as evidenced by reduced time in the central zone in the OFT compared with the control group. Both proBDNF and mBDNF were significantly decreased in the corticosterone and ethanol groups compared with the control group in the prefrontal cortex, hippocampus, hypothalamus and adrenal. The ratio of proBDNF/mBDNF in prefrontal cortex in the corticosterone group was increased compared with the ethanol group. Our data suggest that the ratio of proBDNF/mBDNF is differentially regulated in different tissues. Ethanol and corticosterone downregulate both mBDNF and proBDNF and alter the balance of proBDNF/mBDNF in some tissues. In conclusion, the ethanol and corticosterone may cause abnormal regulation of mBDNF and proBDNF which may lead to mood disorders.


Subject(s)
Affect , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/pharmacology , Ethanol/pharmacology , Maze Learning , Prefrontal Cortex/drug effects , Animals , Central Nervous System Depressants/pharmacology , Female , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Hypothalamus/drug effects , Hypothalamus/metabolism , Hypothalamus/physiopathology , Male , Mice , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...