Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(27): 19400-19427, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38887636

ABSTRACT

Chicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 µg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 µg mL-1 and 3.86 µg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.

2.
Front Pharmacol ; 15: 1406939, 2024.
Article in English | MEDLINE | ID: mdl-38919260

ABSTRACT

Rheumatoid arthritis (RA) is a debilitating autoimmune condition characterized by chronic synovitis, joint damage, and inflammation, leading to impaired joint functionality. Existing RA treatments, although effective to some extent, are not without side effects, prompting a search for more potent therapies. Recent research has revealed the critical role of FAS-associated death domain protein (FADD) microvesicular shedding in RA pathogenesis, expanding its scope beyond apoptosis to include inflammatory and immune pathways. This study aimed to investigate the intricate relationship between mi-RNA 128a, autoimmune and inflammatory pathways, and adenosine levels in modulating FADD expression and microvesicular shedding in a Freund's complete adjuvant (FCA) induced RA rat model and further explore the antirheumatoid potency of trimetazidine (TMZ). The FCA treated model exhibited significantly elevated levels of serum fibrogenic, inflammatory, immunological and rheumatological diagnostic markers, confirming successful RA induction. Our results revealed that the FCA-induced RA model showed a significant reduction in the expression of FADD in paw tissue and increased microvesicular FADD shedding in synovial fluid, which was attributed to the significant increase in the expression of the epigenetic miRNA 128a gene in addition to the downregulation of adenosine levels. These findings were further supported by the significant activation of the TLR4/MYD88 pathway and its downstream inflammatory IkB/NFB markers. Interestingly, TMZ administration significantly improved, with a potency similar to methotrexate (MTX), the deterioration effect of FCA treatment, as evidenced by a significant attenuation of fibrogenic, inflammatory, immunological, and rheumatological markers. Our investigations indicated that TMZ uniquely acted by targeting epigenetic miRNA128a expression and elevating adenosine levels in paw tissue, leading to increased expression of FADD of paw tissue and mitigated FADD microvesicular shedding in synovial fluid. Furthermore, the group treated with TMZ showed significant downregulation of TLR4/MYD88 and their downstream TRAF6, IRAK and NF-kB. Together, our study unveils the significant potential of TMZ as an antirheumatoid candidate, offering anti-inflammatory effects through various mechanisms, including modulation of the FADD-epigenetic regulator mi-RNA 128a, adenosine levels, and the TLR4 signaling pathway in joint tissue, but also attenuation of FADD microvesicular shedding in synovial fluid. These findings further highlight the synergistic administration of TMZ and MTX as a potential approach to reduce adverse effects of MTX while improving therapeutic efficacy.

3.
Heliyon ; 10(1): e23926, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38261909

ABSTRACT

Non-small cell lung cancer (NSCLC) is a pervasive and challenging global health concern. This research delves into the intricate relationship between NSCLC and ACE2 expression, exploring the potential impact of COVID-19 history on this interaction. Tissue samples were meticulously gathered from a cohort of 32 NSCLC patients, 18 of whom had a documented history of COVID-19 infection. The methodology included extensive investigations, such as cell dissociation, histopathological analysis, immunohistochemistry, cell culture, adhesion assays, immunocytochemistry, RNA isolation, and RT-PCR analysis. The results of this comprehensive study unearthed intriguing findings regarding ACE2 expression patterns within NSCLC tissues. Notably, variations were observed in ACE2 profiles between individuals with and without a prior record of COVID-19 infection, hinting at a dynamic interplay. These discoveries carry profound implications for both the understanding of NSCLC progression and the response to COVID-19 in patients with pre-existing NSCLC. The interrelationship between ACE2 expression, NSCLC, and COVID-19, as revealed in this study, may significantly influence patient outcomes and, potentially, therapeutic strategies. In summary, this research serves as an essential contribution to the growing body of knowledge on NSCLC, offering unique insights into the intricate connections between ACE2, COVID-19, and NSCLC. This information may open new avenues for tailored treatment approaches and clinical management strategies, ultimately benefiting patients grappling with NSCLC in the background of the current COVID-19 pandemic.

4.
Microb Pathog ; 185: 106389, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839761

ABSTRACT

The SARS-CoV-2 virus gains entry into human cells by exploiting the angiotensin-converting enzyme 2 (ACE2), a key component known as the spike protein (S), as a point of entry. Initially, SARS-CoV-2 suppresses the natural function of ACE2, leading to a gradual decline in cell health. Additionally, individuals with cancer are considered more susceptible to COVID-19. This study investigates the expression patterns of ACE2 in colorectal cancer (CRC) patients with and without a history of COVID-19 infection. RT-PCR was used to analyze samples from both cancerous and adjacent non-affected colorectal tissues of 47 CRC patients, comprising two groups: 24 CRC patients with no history of COVID-19 and 23 CRC patients with a recent history of COVID-19 infection. Epithelial CR cells were isolated from both types of tissues and cultured to evaluate cell adhesion. Immunohistochemistry analyses were conducted to examine ACE2 protein expression using various ACE2 antibodies for both cell types. The study revealed ACE2 mRNA expression in all CRC tissues of patients with and without a history of COVID-19. ACE2 expression was significantly higher in CRC patients without a history of COVID-19. Notably, the non-affected colorectal cancer (NACRC) tissues of patients without a history of COVID-19 also showed ACE2 expression, whereas no ACE2 expression was detected in the biopsies of CRC patients with a positive COVID-19 history. ACE2 antibodies were employed to validate ACE2 protein expression at the mRNA level. COVID-19 appears to downregulate ACE2 expression in both CRC and NACRC tissues of CRC patients with a positive history of COVID-19 infection.


Subject(s)
COVID-19 , Colorectal Neoplasms , Humans , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2/genetics , RNA, Messenger/genetics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism
5.
Cell Mol Biol (Noisy-le-grand) ; 69(8): 163-171, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37715401

ABSTRACT

Various research pieces of evidence have been published in recent years, establishing the increasing prevalence of early colon cancer among young people. In this background, the current study aimed to analyze the reasons behind colon cancer recurrence among endogamous consanguineous cases in four generations of a single Saud family. For this study, the authors conducted the whole-exome sequencing analysis to screen for germline mutations in DNA samples from consanguineous cases within the family. After collecting the colon samples, it was analyzed histologically and immunohistochemically with the help of Breast Cancer antibodies (BRCA2 and 1 correspondingly) and H&M staining (hematoxylin and eosin). For this study, 26 at-risk consanguineous cases were considered. Three cases were diagnosed with malignant colon cancer, two with breast cancer, and 17 with germline mutations, yet remain unaffected by cancerous tumors. The rest, four consanguineous cases, are healthy and non-carriers of the mutations. However, as per the exome analysis outcomes, 15 cases inherited germline mutations in nine genes. Nine substitution mutations were present in six of the nine inherited genes in these inherited germline mutations. Furthermore, it also presented six insertion and deletion frameshift mutations in five of nine inherited genes. The immunohistochemical staining process achieved positive staining outcomes for BRCA1 and 2. Therefore, germline mutations inherited from the nine genes of endogamous consanguineous cases of mutation carriers remain the primary reason behind colon cancer recurrence in the same family.


Subject(s)
Breast Neoplasms , Colonic Neoplasms , Humans , Adolescent , Female , Germ-Line Mutation/genetics , Saudi Arabia , Neoplasm Recurrence, Local , Colonic Neoplasms/genetics
6.
J Appl Genet ; 64(4): 749-758, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37656292

ABSTRACT

Lifestyle factors, including smoking, have been linked to neoplastic diseases, and reports suggest an association between smoking and overexpression of FGFR (fibroblast growth factor receptor) in certain neoplasms. This study aims to assess the expression of FGFR3 and FGFR4 genes in patients with and without a history of smoking.A total of 118 participants were recruited, including 83 Juvenile Nasopharyngeal Angiofibroma (JNA) patients and 35 healthy participants, the JNA patients were further stratified as smokers and nonsmokers. Total RNA was extracted from the blood & saliva sample by using TRIzol reagent, and quantified using a Nanodrop, and then subjected to gene expression analysis of FGFR3/4 using RT-PCR. Immunohistochemistry analysis was employed using fresh biopsies of JNA to validate the findings. All experiments were performed in triplicates and analysed using the Chi-Square test (P < 0.05). Smokers exhibited significantly lower total RNA concentrations across all sample types (P < 0.001). The study revealed significant upregulation of both FGFR3/4 genes in JNA patients (P < 0.05). Moreover, FGFR3 expression was significantly higher among smokers 66% (95% CI: 53-79%) compared to non-smokers 22% (95% CI: 18-26%). Immunohistochemistry analysis demonstrated moderate to strong staining intensity for FGFR3 among smokers. The study highlights the overexpression of FGFR3/4 genes in JNA patients, with a stronger association observed among smokers. Furthermore, medical reports indicated higher rates of recurrence and bleeding intensity among smokers. These findings emphasize the potential role of FGFR3 as a key molecular factor in JNA, particularly in the context of smoking.


Subject(s)
Angiofibroma , Nasopharyngeal Neoplasms , Humans , Angiofibroma/genetics , Angiofibroma/metabolism , Angiofibroma/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Immunohistochemistry , Smoking/genetics , RNA , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 4/genetics
7.
Animals (Basel) ; 13(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37508024

ABSTRACT

The Sox gene family constitutes transcription factors with a conserved high mobility group box (HMG) that regulate a variety of developmental processes, including sex differentiation, neural, cartilage, and early embryonic development. In this study, we systematically analyzed and characterized the 20 Sox genes from the whole buffalo genome, using comparative genomic and evolutionary analyses. All the buffalo Sox genes were divided into nine sub-groups, and each gene had a specific number of exons and introns, which contributed to different gene structures. Molecular phylogeny revealed more sequence similarity of buffalo Sox genes with those of cattle. Furthermore, evolutionary analysis revealed that the HMG domain remained conserved in the all members of the Sox gene family. Similarly, all the genes are under strong purifying selection pressure; seven segmental duplications occurred from 9.65 to 21.41 million years ago (MYA), and four potential recombination breakpoints were also predicted. Mutational analysis revealed twenty non-synonymous mutations with potential effects on physiological functions, including embryonic development and cell differentiation in the buffalo. The present study provides insights into the genetic architecture of the Sox gene family in buffalo, highlights the significance of mutations, and provides their potential utility for marker-assisted selection for targeted genetic improvement in buffalo.

8.
Pathol Res Pract ; 248: 154578, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37320865

ABSTRACT

Triple-negative breast cancer (TNBC) seriously affects woman's health. The present work is to study the working mechanism of lncRNA SNHG11 in TNBC. The expressions of SNHG11, microRNA (miR)- 7-5p, specificity protein 2 (SP2) and mucin 1 (MUC-1) in TNBC tissues and cells were detected. SNHG11, miR-7-5p and SP2 expressions were then evaluated for TNBC cell malignant behaviors. The relationships among SNHG11, miR-7-5p and SP2 were predicted and verified. Finally, the binding of the transcription factor SP2 to MUC-1 promoter was detected. Abnormally elevated SNHG11, SP2 and MUC-1 expressions were observed in cultured TNBC cells and tumor tissues. SNHG11 knockdown in TNBC cells. Silencing SP2 weakened the promoting effect of SNHG11 on TNBC progression. SNHG11 negatively regulated miR-7-5p expression and positively regulated SP2 expression. SP2 bound to the P2 site of MUC-1 promoter, and SP2 knockdown suppressed MUC-1 expression. It was demonstrated that lncRNA SNHG11 promoted TNBC cell malignant behaviors to facilitate TNBC progression. The study is first of its kinds to unravel the potential of lncRNA SNHG11 in relation to TNBC.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Female , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics
9.
Tumour Biol ; 45(1): 1-14, 2023.
Article in English | MEDLINE | ID: mdl-36806529

ABSTRACT

BACKGROUND: Smoking is one of the most popular risk factors provoking bladder cancer (BC). This research intended to estimate cigarette smoking effect involving PAF signs between smoking patients with BC and non-smoking patients with same diagnosis to define relations with pathological characteristics and their prognosis on zero-relapse and disease-associated recovery. METHODS: Two groups of smokers (n = 54) and non-smokers (n = 62) were selected. Both cohorts of patients had BC. They were evaluated utilizing NGS on 9 cancer-related genes and confirmed through the Sanger DNA sequencing and histopathological tests based on H&E staining. The factor of smoking and impact of PAF development by ELISA assay and PAF-R manifestation in terms of immunochemical evaluation on BC areas comparing to a control group (n = 30) was examined involving healthy contributors, including the use of well-designed statistical trials. RESULTS: The multivariate evaluation showed considerable rise in mutation patterns related to smoking among BC patients (group 3), increase in PAF development (***P<0.001) and vivid signs of PAF-R contrasted to non-smokers with BC (group 2) and control group (group 1). All the identified biological changes (gains/losses) were recorded at the same locations in both groups. Patients from group 3 held 3-4 various mutations, while patients from group 2 held 1-3 various mutations. Mutations were not identified in 30 respondents from control group. The most repeated mutations were identified in 3 of 9 examined genes, namely TP53, PIK3CA and PTEN, with highest rates of increase in Group 3. Moreover, histopathological tests revealed barely identifiable and abnormal traits in BC tissues, i.e. were without essential histopathological changes between groups 2 and 3. CONCLUSION: Smoking of cigarettes provokes PAF development due to urothelial inflammation and rise of mutations in 9 cancer-related genes. These are indicative factors of inducing BC.


Subject(s)
Urinary Bladder Neoplasms , Humans , Male , Mutation , Non-Smokers , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Platelet Activating Factor/metabolism
10.
Forensic Sci Int ; 343: 111562, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36657183

ABSTRACT

This research explores DNA consistency and attempts to detect STR profiles from the degrading menstrual blood samples (MBS) as reliable forensic evidence. Peripheral (PBS) and MBS of 30 healthy fertile females were taken on the menstrual cycle's second day. They were obtained at different time periods (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, and 48 h) at 25 °C. DNA evaluation was fulfilled to analyze DNA profiles. A considerable elevation in the median concentrations of DNA between 0 and 14-h intervals were documented, whereas decreased extents were registered between 16 and 48 h. Moreover, complete STR profiles (24/24) for DNA were discovered in all the intervals (0, 2, and 48 h). Periods of 0-8 h demonstrated the maximum extents of DNA materials. Full STR were discovered in all the intervals (0, 2, and 48 h). Eventually, MBS can be utilized as forensic evidence.


Subject(s)
DNA Fingerprinting , Microsatellite Repeats , Female , Humans , DNA/genetics
11.
Saudi J Biol Sci ; 29(4): 1928-1935, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531207

ABSTRACT

In recent years, significant progress has been achieved in genome editing applications using new programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9). These genome editing tools are capable of nicking DNA precisely by targeting specific sequences, and enable the addition, removal or substitution of nucleotides via double-stranded breakage at specific genomic loci. CRISPR/Cas system, one of the most recent genome editing tools, affords the ability to efficiently generate multiple genomic nicks in single experiment. Moreover, CRISPR/Cas systems are relatively easy and cost effective when compared to other genome editing technologies. This is in part because CRISPR/Cas systems rely on RNA-DNA binding, unlike other genome editing tools that rely on protein-DNA interactions, which affords CRISPR/Cas systems higher flexibility and more fidelity. Genome editing tools have significantly contributed to different aspects of livestock production such as disease resistance, improved performance, alterations of milk composition, animal welfare and biomedicine. However, despite these contributions and future potential, genome editing technologies also have inherent risks, and therefore, ethics and social acceptance are crucial factors associated with implementation of these technologies. This review emphasizes the impact of genome editing technologies in development of livestock breeding and production in numerous species such as cattle, pigs, sheep and goats. This review also discusses the mechanisms behind genome editing technologies, their potential applications, risks and associated ethics that should be considered in the context of livestock.

12.
Food Chem ; 374: 131611, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34863603

ABSTRACT

This study aimed to explore the effects of different feeding regimes on muscle metabolism and its association with meat quality of Tibetan sheep through correlation analysis of meat quality and differential metabolites using untargeted and targeted metabolomics. The untargeted metabolome was detected by UHPLC-QTOF-MS, and the targeted metabolome was detected by UHPLC-QQQ-MS (amino acids) and GC-MS (fatty acids). Based on the researched results, the nutritional quality of meat, including the content of protein and fat and the edible quality of meat, including tenderness, water holding capacity (WHC), texture, and flavor of Tibetan sheep were superior in the stall-feeding group (GBZ) than in the traditional grazing group (CBZ). In the GBZ group, the key upregulated metabolites and metabolic pathways were dominated by essential amino acids (EAAs) and amino acid metabolism as well as the key downregulated metabolites and metabolic pathways were dominated by polyunsaturated fatty acids (PUFA) and lipid metabolism. Correlation analysis showed that there was a significant correlation between the results of untargeted metabolomics and some phenotypic data, including shear force, cooking loss, drip loss, chewiness, elasticity, flavor, and the content of protein and fat. Taken together, stall-feeding would be appropriate for the production of Tibetan mutton, offering better mouthfeel and higher nutrition by altering the muscle metabolism and increasing the beneficial compound deposition in the muscle.


Subject(s)
Meat , Red Meat , Animals , Fatty Acids , Meat/analysis , Muscles , Sheep , Tibet
13.
BMC Oral Health ; 21(1): 626, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876124

ABSTRACT

BACKGROUND: Khat leaves contain the alkaloid cathinone. Research shows that khat might provoke toxicity, mutagenicity, as well as carcinogenicity. METHODS: Two groups were identified as khat abusers and were categorized by abuse time and diagnosis of oral squamous cell carcinoma (OSCC). Here, 41 participants from Group 2 were short-term khat users, and 42 participants were long-term khat users. The control group included 30 healthy individuals. The coding exons included nine cancer-related genes and were analysed. The histopathological research was conducted with H&E staining along with the TP53 protein expression by implementing immunohistochemical analyses. RESULTS: Here, 41 short-term khat users carried seven somatic mutations in four out of nine cancer-related genes: 29/41(70.73%) ARID1A, 24/41(58.53%) MLH1, 34/41(82.92%) PIK3CA and 36/41(87.80%) TP53. The 42 long-term khat users incorporated nine somatic mutations in five out of nin ecancer-related genes: 40/42(95.23%) ARID1A, 36/42(85.71%) ARID2, 29/42(69.04%) PIK3CA, 27/42(64.28%) MLH1, and 35/42(83.33%) TP53. Every khat user had somatic mutations related to OSCC affecting the gingiva and the lower lip. TP53 protein expression was confirmed in all immunohistochemical oral tests. Carcinoma was also positive in the histopathological analysis. CONCLUSIONS: Khat is a mutagenic and carcinogenic plant that provoked OSCC among short-term khat users (<15 years of use) and long-term users (>15 years of use).


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/genetics , Catha/adverse effects , DNA , Humans , Mouth Neoplasms/chemically induced , Mouth Neoplasms/genetics , Mutation
14.
Res Vet Sci ; 141: 174-179, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34749102

ABSTRACT

Fatty acid binding protein 4 (FABP4) was crucial to fatty acid uptake and intracellular transport. However, the mechanisms regulating yak (Bos grunniens) FABP4 transcription were not determined. In the current study, predominant expression levels of yak FABP4 were identified in subcutaneous fat and longissimus dorsi muscles by quantitative real-time polymerase chain reactions (qPCR). The CCAAT/enhancer binding protein alpha (CEBPα) and myocyte enhancer factor 2A (MEF2A), as transcriptional activator or repressor in the promoter region of FABP4, were confirmed by both site-directed mutagenesis experiment and chromatin immunoprecipitation assay. Additionally, molecular mechanisms of CEBPɑ regulation were analyzed to explore the transcriptional regulatory property of FABP4, which indicated that transcriptional activity of CEBPɑ depended on CCAAT/ enhancer binding protein beta (CEBPß) transcription factor. Our results demonstrated that CEBPß binding directly to the promoter region drove CEBPɑ transcription, improving yak FABP4 transcriptional activity in adipocytes. This mechanism expanded the information on the transcriptional regulatory network of adipogenesis.


Subject(s)
Adipogenesis , Adipose Tissue , CCAAT-Enhancer-Binding Protein-alpha , CCAAT-Enhancer-Binding Protein-beta , Fatty Acid-Binding Proteins , Adipose Tissue/metabolism , Animals , Cattle , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Promoter Regions, Genetic
15.
Asian Pac J Cancer Prev ; 22(9): 2797-2806, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34582648

ABSTRACT

BACKGROUND: In forensic science, there are cases when the only available provider of biological data is samples of malignant tissues. It can be useful in identification and/or paternity tests. Still, such samples have ambiguities because of microsatellite instability (MSI) and loss of heterozygosity (LOH) effects, being often related to neoplasia. METHODS: This research evaluates 16 autosomal short tandem repeat (STR) loci (traditional in forensic investigations) to get genetic data. MSI and LOH were estimated in DNA patterns derived from 73 Saudi respondents (30 healthy individuals and 43 persons with diagnosed colorectal cancer (CRC). Upon deriving DNA from blood, CRC specimens were obtained in both groups, along with the adjoining normal non-cancerous tissues (N-CRC). All specimens and 16 loci (15 STR loci and Amelogenin) were evaluated. Moreover, both colorectal samples were histologically analyzed utilizing HandE staining. RESULTS: Findings revealed non-essential variability in genetic information because of MSI and/or LOH. In CRC, mutations rates were 0.42% (MSI) and 1.62% (LOH). In N-CRC, mutation rates were 0.00% (MSI) and 0.59% (LOH). Further, LOH-related deviations were recorded in 5 loci out of 16. MSI-related deviations were recorded in 4 out of 16 loci, being present in CRC samples only. Genetic deviations within the marker loci might inform about false homozygosity/heterozygosity. Similarly, false gender might come from improper interpretation of DNA profiles. Finally, histopathological trials showed considerable histopathological alterations contrasted to N-CRC. CONCLUSION: This study is unique in demonstrating the application of 16 autosomal STRs from CRC samples and their comparison with the adjoining N-CRCs in Saudi participants, contributing to the field of forensic science. The experiment revealed no considerable distinctions, while showing that cancer tissues might display MSI and LOH effects that might challenge data interpretation, if STRs are to be applied in the forensic investigation.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Forensic Pathology , Genetic Loci , Microsatellite Repeats/genetics , DNA/analysis , Humans , Loss of Heterozygosity , Microsatellite Instability , Saudi Arabia
SELECTION OF CITATIONS
SEARCH DETAIL
...