Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Comput Methods Programs Biomed ; 209: 106301, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34392001

ABSTRACT

Mathematical model-based analysis has proven its potential as a critical tool in the battle against COVID-19 by enabling better understanding of the disease transmission dynamics, deeper analysis of the cost-effectiveness of various scenarios, and more accurate forecast of the trends with and without interventions. However, due to the outpouring of information and disparity between reported mathematical models, there exists a need for a more concise and unified discussion pertaining to the mathematical modeling of COVID-19 to overcome related skepticism. Towards this goal, this paper presents a review of mathematical model-based scenario analysis and interventions for COVID-19 with the main objectives of (1) including a brief overview of the existing reviews on mathematical models, (2) providing an integrated framework to unify models, (3) investigating various mitigation strategies and model parameters that reflect the effect of interventions, (4) discussing different mathematical models used to conduct scenario-based analysis, and (5) surveying active control methods used to combat COVID-19.


Subject(s)
COVID-19 , Forecasting , Humans , Models, Theoretical , SARS-CoV-2
2.
Biomed Signal Process Control ; 68: 102676, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33936249

ABSTRACT

Globally, informed decision on the most effective set of restrictions for the containment of COVID-19 has been the subject of intense debates. There is a significant need for a structured dynamic framework to model and evaluate different intervention scenarios and how they perform under different national characteristics and constraints. This work proposes a novel optimal decision support framework capable of incorporating different interventions to minimize the impact of widely spread respiratory infectious pandemics, including the recent COVID-19, by taking into account the pandemic's characteristics, the healthcare system parameters, and the socio-economic aspects of the community. The theoretical framework underpinning this work involves the use of a reinforcement learning-based agent to derive constrained optimal policies for tuning a closed-loop control model of the disease transmission dynamics.

3.
Sensors (Basel) ; 20(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326014

ABSTRACT

Electrochemical gas sensors require regular maintenance to check and secure proper functioning. Standard procedures usually involve testing and recalibration of the sensors, for which working environments are needed. Periodic calibration is therefore necessary to ensure reliable and accurate measurements. This paper proposes a dedicated smart calibration rig with a set of novel features enabling simultaneous calibration of multiple sensors. The proposed calibration rig system comprises a gas mixing system, temperature control system, a test chamber, and a process-control PC that controls all calibration phases. The calibration process is automated by a LabVIEW-based platform that controls the calibration environment for the sensor nodes, logs sensor data, and best fit equation based on interpolation for every sensor on the node and uploads it to the sensor node for next deployments. The communication between the PC and the sensor nodes is performed using the same IEEE 802.15.4 (ZigBee) protocol that the nodes also use in field deployment for air quality measurement. The results presented demonstrate the effectiveness of the sensors calibration rig.

SELECTION OF CITATIONS
SEARCH DETAIL
...